Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group

      Preprint
      , , ,
      bioRxiv

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ongoing speciation in most African malaria vectors gives rise to cryptic populations, which differ remarkably in their behaviour, ecology and capacity to vector malaria parasites. Understanding the population structure and the drivers of genetic differentiation among mosquitoes is critical for effective disease control because heterogeneity within species contribute to variability in malaria cases and allow fractions of vector populations to escape control efforts. To examine the population structure and the potential impacts of recent large-scale control interventions, we have investigated the genomic patterns of differentiation in mosquitoes belonging to the Anopheles nili group, a large taxonomic group that diverged ~3-Myr ago. Using 4343 single nucleotide polymorphisms (SNPs), we detected strong population structure characterized by high FST values between multiple divergent populations adapted to different habitats within the Central African rainforest. Delineating the cryptic species within the Anopheles nili group is challenging due to incongruence between morphology, ribosomal DNA and SNP markers consistent with incomplete lineage sorting and/or interspecific gene flow. A very high proportion of loci are fixed (FST = 1) within the genome of putative species, which suggests that ecological and/or reproductive barriers are maintained by strong selection on a substantial number of genes.

          Related collections

          Author and article information

          Journal
          bioRxiv
          August 06 2016
          Article
          10.1101/068239
          a2e289b9-6a6a-4adc-b764-974ef52fa579
          © 2016
          History

          Evolutionary Biology,Forensic science
          Evolutionary Biology, Forensic science

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content449