14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mini-review on Glycolysis and Cancer

      Journal of Cancer Education
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis.

          Cancer cells display high rates of aerobic glycolysis, a phenomenon known historically as the Warburg effect. Lactate and pyruvate, the end products of glycolysis, are highly produced by cancer cells even in the presence of oxygen. Hypoxia-induced gene expression in cancer cells has been linked to malignant transformation. Here we provide evidence that lactate and pyruvate regulate hypoxia-inducible gene expression independently of hypoxia by stimulating the accumulation of hypoxia-inducible Factor 1alpha (HIF-1alpha). In human gliomas and other cancer cell lines, the accumulation of HIF-1alpha protein under aerobic conditions requires the metabolism of glucose to pyruvate that prevents the aerobic degradation of HIF-1alpha protein, activates HIF-1 DNA binding activity, and enhances the expression of several HIF-1-activated genes including erythropoietin, vascular endothelial growth factor, glucose transporter 3, and aldolase A. Our findings support a novel role for pyruvate in metabolic signaling and suggest a mechanism by which high rates of aerobic glycolysis can promote the malignant transformation and survival of cancer cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene.

            High glycolysis, well known as "Warburg effect," is frequently observed in a variety of cancers. Whether the deregulation of miRNAs contributes to the Warburg effect remains largely unknown. Because miRNA regulates gene expression at both mRNA and protein levels, we constructed a gene functional association network, which allows us to detect the gene activity instead of gene expression, to integratively analyze the microarray data for gene expression and miRNA expression profiling and identify glycolysis-related gene-miRNA pairs deregulated in cancer. Hexokinase 2 (HK2), coding for the first rate-limiting enzyme of glycolysis, is among the top list of genes predicted and potentially regulated by multiple miRNAs including miR-143. Interestingly, miR-143 expression was inversely associated with HK2 protein level but not mRNA level in human lung cancer samples. miR-143, down-regulated by mammalian target of rapamycin activation, reduces glucose metabolism and inhibits cancer cell proliferation and tumor formation through targeting HK2. Collectively, we have not only established a novel methodology for gene-miRNA pair prediction but also identified miR-143 as an essential regulator of cancer glycolysis via targeting HK2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo.

              The glycolytic phenotype is a widespread phenomenon in solid cancer forms, including breast cancer. Dichloroacetate (DCA) has recently been proposed as a novel and relatively non-toxic anti-cancer agent that can reverse the glycolytic phenotype in cancer cells through the inhibition of pyruvate dehydrogenase kinase. We have examined the effect of DCA against breast cancer cells, including in a highly metastatic in vivo model. The growth of several breast cancer cell lines was found to be inhibited by DCA in vitro. Further examination of 13762 MAT rat mammary adenocarcinoma cells found that reversal of the glycolytic phenotype by DCA correlated with the inhibition of proliferation without any increase in cell death. This was despite a small but significant increase in caspase 3/7 activity, which may sensitize cancer cells to other apoptotic triggers. In vivo, DCA caused a 58% reduction in the number of lung metastases observed macroscopically after injection of 13762 MAT cells into the tail vein of rats (P = 0.0001, n > or = 9 per group). These results demonstrate that DCA has anti-proliferative properties in addition to pro-apoptotic properties, and can be effective against highly metastatic disease in vivo, highlighting its potential for clinical use.
                Bookmark

                Author and article information

                Journal
                Journal of Cancer Education
                J Canc Educ
                Springer Science and Business Media LLC
                0885-8195
                1543-0154
                September 2013
                June 1 2013
                September 2013
                : 28
                : 3
                : 454-457
                Article
                10.1007/s13187-013-0486-9
                23728993
                a2d2a944-07b8-4cbe-96f8-89c02bb55d7e
                © 2013
                History

                Comments

                Comment on this article