0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonterpenoid Chemical Diversity of Cannabis Phenotypes Predicts Differentiated Aroma Characteristics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent increase in legality of Cannabis Sativa L . has led to interest in developing new varieties with unique aromatic or effect-driven traits. Selectively breeding plants for the genetic stability and consistency of their secondary metabolite profiles is one application of phenotyping. While this horticultural process is used extensively in the cannabis industry, few studies exist examining the chemical data that may differentiate phenotypes aromatically. To gain insight into the diversity of secondary metabolite profiles between progeny, we analyzed five ice water hash rosin extracts created from five different phenotypes of the same crossing using comprehensive 2-dimensional gas chromatography coupled to time-of-flight mass spectrometry, flame ionization detection, and sulfur chemiluminescence detection. These results were then correlated to results from a human sensory panel, which revealed specific low-concentration compounds that strongly influence sensory perception. We found aroma differences between certain phenotypes that are driven by key minor, nonterpenoid compounds, including the newly reported 3-mercaptohexyl hexanoate. We further report the identification of octanoic and decanoic acids, which are implicated in the production of cheese-like aromas in cannabis. These results establish that even genetically similar phenotypes can possess diverse and distinct aromas arising not from the dominant terpenes, but rather from key minor volatile compounds. Moreover, our study underscores the value of detailed chemical analyses in enhancing cannabis selective breeding practices, offering insights into the chemical basis of aroma and sensory differences.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cannabis sativa: The Plant of the Thousand and One Molecules

          Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fiber since the dawn of times. This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibers. Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively. In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenes and phenolic compounds, and their biosynthetic routes. Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities. The therapeutic and commercial interests of some terpenes and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data. Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e., cell suspension and hairy root cultures. Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories. Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical constituents of marijuana: the complex mixture of natural cannabinoids.

            The cannabis plant (Cannabis sativa L.) and products thereof (such as marijuana, hashish and hash oil) have a long history of use both as a medicinal agent and intoxicant. Over the last few years there have been an active debate regarding the medicinal aspects of cannabis. Currently cannabis products are classified as Schedule I drugs under the Drug Enforcement Administration (DEA) Controlled Substances act, which means that the drug is only available for human use as an investigational drug. In addition to the social aspects of the use of the drug and its abuse potential, the issue of approving it as a medicine is further complicated by the complexity of the chemical make up of the plant. This manuscript discusses the chemical constituents of the plant with particular emphasis on the cannabinoids as the class of compounds responsible for the drug's psychological properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes.

              The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled conditions. Every week, three plants from each variety were cut and dried, and the leaves and flowers were analyzed separately. Eight major cannabinoids were analyzed via HPLC-DAD, and 28 terpenes were quantified using GC-FID and verified via GC-MS. The chemotypes of the plants, as defined by the tetrahydrocannabinolic acid/cannabidiolic acid (THCA/CBDA) ratio, were clear from the beginning and stable during growth. The concentrations of the major cannabinoids and terpenes were determined, and different patterns were found among the chemotypes. In particular, the plants from chemotypes II and III needed more time to reach peak production of THCA, CBDA, and monoterpenes. Differences in the cannabigerolic acid development among the different chemotypes and between monoterpene and sesquiterpene evolution patterns were also observed. Plants of different chemotypes were clearly differentiated by their terpene content, and characteristic terpenes of each chemotype were identified.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                19 June 2024
                02 July 2024
                : 9
                : 26
                : 28806-28815
                Affiliations
                []Research and Development, Abstrax Tech , 2661 Dow Avenue, Tustin, California 92780, United States
                []Science, Engineering, and Mathematics Division, Cerritos College , 11110 Alondra Blvd, Norwalk, California 90650, United States
                [§ ]Sepsolve Analytical, Schauenburg Analytics , Waterloo, Ontario N2J 4G8, Canada
                []710 Laboratories , 8149 Santa Monica Boulevard Suite 298, Los Angeles, California 90046, United States
                Author notes
                Author information
                https://orcid.org/0009-0000-8397-2339
                https://orcid.org/0000-0002-5466-0405
                Article
                10.1021/acsomega.4c03225
                11223244
                a2d25950-52eb-4f6f-92b5-59c53fff78a9
                © 2024 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 03 April 2024
                : 03 June 2024
                : 24 May 2024
                Funding
                Funded by: Abstrax Tech Inc., doi NA;
                Award ID: NA
                Categories
                Article
                Custom metadata
                ao4c03225
                ao4c03225

                Comments

                Comment on this article