4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scenarios for Reducing Greenhouse Gas Emissions from Food Procurement for Public School Kitchens in Copenhagen

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The food system is responsible for a third of global greenhouse gas emissions, with the majority originating from livestock. Reducing our meat consumption is thus an important part of achieving necessary reductions in emissions, and reaching children is especially important to facilitate long-lasting changes in dietary habits now and into the future. This study developed dietary scenarios for three public schools in Copenhagen, which were used as cases to demonstrate reduction in greenhouse gas emissions from public kitchens. The scenarios included (i) replacement of all beef with poultry, (ii) replacement of all meat and fish with legumes, and (iii) alignment of food procurement to the Danish Food Based Dietary Guidelines based on the Planetary Health Diet. The effects on emissions were calculated using three different LCA databases. The results showed reductions ranging from 32 to 64% depending on the scenario, the current meal plan at the case school, and the emission factors used. Not surprisingly, the vegetarian scenario resulted in the highest reductions and replacing beef resulted in the lowest. Adhering to the national guidelines will result in reductions in emissions of 39–48%. Significant variability in the results existed between the three databases, highlighting the importance of basic understanding of LCA for kitchens interested in estimating and reducing their carbon footprint while at the same time providing justification for applying multiple LCA databases for increasing robustness.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reducing food’s environmental impacts through producers and consumers

            Food's environmental impacts are created by millions of diverse producers. To identify solutions that are effective under this heterogeneity, we consolidated data covering five environmental indicators; 38,700 farms; and 1600 processors, packaging types, and retailers. Impact can vary 50-fold among producers of the same product, creating substantial mitigation opportunities. However, mitigation is complicated by trade-offs, multiple ways for producers to achieve low impacts, and interactions throughout the supply chain. Producers have limits on how far they can reduce impacts. Most strikingly, impacts of the lowest-impact animal products typically exceed those of vegetable substitutes, providing new evidence for the importance of dietary change. Cumulatively, our findings support an approach where producers monitor their own impacts, flexibly meet environmental targets by choosing from multiple practices, and communicate their impacts to consumers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Options for keeping the food system within environmental limits

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                September 2023
                August 29 2023
                : 15
                : 17
                : 13002
                Article
                10.3390/su151713002
                a2c02341-4b48-4cd3-b5d8-f363df1cc729
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article