3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-16-1-3p Represses Breast Tumor Growth and Metastasis by Inhibiting PGK1-Mediated Warburg Effect

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Warburg effect (aerobic glycolysis) is a hallmark of cancer and is becoming a promising target for diagnosis and therapy. Phosphoglycerate kinase 1 (PGK1) is the first adenosine triphosphate (ATP)-generating glycolytic enzyme in the aerobic glycolysis pathway and plays an important role in cancer development and progression. However, how microRNAs (miRNAs) regulate PGK1-mediated aerobic glycolysis remains unknown. Here, we show that miR-16-1-3p inhibits PGK1 expression by directly targeting its 3′-untranslated region. Through inhibition of PGK1, miR-16-1-3p suppressed aerobic glycolysis by decreasing glucose uptake, lactate and ATP production, and extracellular acidification rate, and increasing oxygen consumption rate in breast cancer cells. Aerobic glycolysis regulated by the miR-16-1-3p/PGK1 axis is critical for modulating breast cancer cell proliferation, migration, invasion and metastasis in vitro and in vivo. In breast cancer patients, miR-16-1-3p expression is negatively correlated with PGK1 expression and breast cancer lung metastasis. Our findings provide clues regarding the role of miR-16-1-3p as a tumor suppressor in breast cancer through PGK1 suppression. Targeting PGK1 through miR-16-1-3p could be a promising strategy for breast cancer therapy.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy.

            Radiotherapy, an important treatment modality in oncology, kills cells through induction of oxidative stress. However, malignant tumors vary in their response to irradiation as a consequence of resistance mechanisms taking place at the molecular level. It is important to understand these mechanisms of radioresistance, as counteracting them may improve the efficacy of radiotherapy. In this review, we describe how the hypoxia-inducible factor 1 (HIF-1) pathway has a profound effect on the response to radiotherapy. The main focus will be on HIF-1-controlled protection of the vasculature postirradiation and on HIF-1 regulation of glycolysis and the pentose phosphate pathway. This aberrant cellular metabolism increases the antioxidant capacity of tumors, thereby countering the oxidative stress caused by irradiation. From the results of translational studies and the first clinical phase I/II trials, it can be concluded that targeting HIF-1 and tumor glucose metabolism at several levels reduces the antioxidant capacity of tumors, affects the tumor microenvironment, and sensitizes various solid tumors to irradiation. ©2012 AACR
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting noncoding RNAs in disease.

              Many RNA species have been identified as important players in the development of chronic diseases, including cancer. Over the past decade, numerous studies have highlighted how regulatory RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play crucial roles in the development of a disease state. It is clear that the aberrant expression of miRNAs promotes tumor initiation and progression, is linked with cardiac dysfunction, allows for the improper physiological response in maintaining glucose and insulin levels, and can prevent the appropriate integration of neuronal networks, resulting in neurodegenerative disorders. Because of this, there has been a major effort to therapeutically target these noncoding RNAs. In just the past 5 years, over 100 antisense oligonucleotide-based therapies have been tested in phase I clinical trials, a quarter of which have reached phase II/III. Most notable are fomivirsen and mipomersen, which have received FDA approval to treat cytomegalovirus retinitis and high blood cholesterol, respectively. The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. Here we summarize the latest promises and challenges of targeting noncoding RNAs in disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                03 December 2020
                2020
                : 8
                : 615154
                Affiliations
                [1] 1College of Medicine, Yanbian University , Yanji, China
                [2] 2Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine , Beijing, China
                Author notes

                Edited by: Bin Yuan, George Washington University, United States

                Reviewed by: Zhihong Yang, Indiana University, United States; Chi Zhu, University of California, Berkeley, United States

                This article was submitted to Molecular Medicine, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2020.615154
                7744604
                33344462
                a2a5ec78-4c26-4ce1-9994-65fed660e923
                Copyright © 2020 Ye, Liang, Zhang and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 October 2020
                : 09 November 2020
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 35, Pages: 12, Words: 0
                Categories
                Cell and Developmental Biology
                Original Research

                the warburg effect,pgk1,mir-16-1-3p,cell proliferation,metastasis

                Comments

                Comment on this article