3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic, Enzymatic Activity, and Transcriptomic Analysis Reveals the Mechanism Underlying the Lack of Characteristic Floral Scent in Apricot Mei Varieties

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apricot mei, a hybrid of Prunus mume and Prunus sibirica, usually has greater cold resistance than P. mume; however, most varieties of Apricot mei lack the characteristic floral scent of P. mume. The volatile and intracellular metabolites, activity levels of key enzymes, and transcriptomes of blooming flowers were comprehensively investigated in five varieties of P. mume. Benzyl acetate and eugenol were determined to be the main components of the P. mume floral scent. However, benzyl benzoate and benzyl alcohol benzoyltransferase activity was detected in only the low-fragrance varieties “Dan Fenghou” and “Yanxing.” No benzyl alcohol or benzaldehyde reductase (BAR) activity was detected in the non-fragrant variety “Fenghou.” PmBAR1 and PmBAR3 were identified as the key genes responsible for BAR activity. The lack of benzyl alcohol synthesis in the “Fenghou” variety was caused by low activity of PmBAR1-Fen and low expression of PmBAR3. The 60-aa segment at the N-terminus of PmBAR3 was found to play an important role in its enzymatic activity. Correlation tests between floral scent metabolites and the transcriptomes of the five different scented varieties showed that some transcripts associated with hormones, stresses, posttranslational modifications and transporters may also play important regulatory roles in floral scent metabolism in the different varieties.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.

          Recent advances in high-throughput cDNA sequencing (RNA-seq) can reveal new genes and splice variants and quantify expression genome-wide in a single assay. The volume and complexity of data from RNA-seq experiments necessitate scalable, fast and mathematically principled analysis software. TopHat and Cufflinks are free, open-source software tools for gene discovery and comprehensive expression analysis of high-throughput mRNA sequencing (RNA-seq) data. Together, they allow biologists to identify new genes and new splice variants of known ones, as well as compare gene and transcript expression under two or more conditions. This protocol describes in detail how to use TopHat and Cufflinks to perform such analyses. It also covers several accessory tools and utilities that aid in managing data, including CummeRbund, a tool for visualizing RNA-seq analysis results. Although the procedure assumes basic informatics skills, these tools assume little to no background with RNA-seq analysis and are meant for novices and experts alike. The protocol begins with raw sequencing reads and produces a transcriptome assembly, lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results. The protocol's execution time depends on the volume of transcriptome sequencing data and available computing resources but takes less than 1 d of computer time for typical experiments and ∼1 h of hands-on time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biosynthesis, function and metabolic engineering of plant volatile organic compounds.

            Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data.

              Next-generation technologies generate an overwhelming amount of gene sequence data. Efficient annotation tools are required to make these data amenable to functional genomics analyses. The Mercator pipeline automatically assigns functional terms to protein or nucleotide sequences. It uses the MapMan 'BIN' ontology, which is tailored for functional annotation of plant 'omics' data. The classification procedure performs parallel sequence searches against reference databases, compiles the results and computes the most likely MapMan BINs for each query. In the current version, the pipeline relies on manually curated reference classifications originating from the three reference organisms (Arabidopsis, Chlamydomonas, rice), various other plant species that have a reviewed SwissProt annotation, and more than 2000 protein domain and family profiles at InterPro, CDD and KOG. Functional annotations predicted by Mercator achieve accuracies above 90% when benchmarked against manual annotation. In addition to mapping files for direct use in the visualization software MapMan, Mercator provides graphical overview charts, detailed annotation information in a convenient web browser interface and a MapMan-to-GO translation table to export results as GO terms. Mercator is available free of charge via http://mapman.gabipd.org/web/guest/app/Mercator. © 2013 John Wiley & Sons Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                22 October 2020
                2020
                : 11
                : 574982
                Affiliations
                [1] 1Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University , Beijing, China
                [2] 2Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University , Beijing, China
                Author notes

                Edited by: Danièle Werck, UPR2357 Institut de biologie moléculaire des plantes (IBMP), France

                Reviewed by: Thomas A. Colquhoun, University of Florida, United States; Sandrine Moja, Université Jean Monnet, France

                *Correspondence: Qixiang Zhang, zqxbjfu@ 123456126.com

                This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2020.574982
                7642261
                a2923160-ed96-46a0-814f-f33eb4cc4792
                Copyright © 2020 Bao, Zhang, Ding, Ding, Yang, Wang, Cheng and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 June 2020
                : 30 September 2020
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 28, Pages: 18, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                floral scent,benzyl acetate,eugenol,benzyl alcohol,benzyl benzoate,pmbar,apricot mei,prunus mume

                Comments

                Comment on this article