Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Epithelial Toll-like receptors and their role in gut homeostasis and disease

      ,
      Nature Reviews Gastroenterology & Hepatology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d14557055e69">The human gastrointestinal tract is colonized by trillions of microorganisms that interact with the host to maintain structural and functional homeostasis. Acting as the interface between the site of the highest microbial burden in the human body and the richest immune compartment, a single layer of intestinal epithelial cells specializes in nutrient absorption, stratifies microorganisms to limit colonization of tissues and shapes the responses of the subepithelial immune cells. In this Review, we focus on the expression, regulation and functions of Toll-like receptors (TLRs) in the different intestinal epithelial lineages to analyse how epithelial recognition of bacteria participates in establishing homeostasis in the gut. In particular, we elaborate on the involvement of epithelial TLR signalling in controlling crypt dynamics, enhancing epithelial barrier integrity and promoting immune tolerance towards the gut microbiota. Furthermore, we comment on the regulatory mechanisms that fine-tune TLR-driven immune responses towards pathogens and revisit the role of TLRs in epithelial repair after injury. Finally, we discuss how dysregulation of epithelial TLRs can lead to the generation of dysbiosis, thereby increasing susceptibility to colitis and tumorigenesis. </p>

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis.

          Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.

            Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology. A susceptibility locus for Crohn's disease has been mapped to chromosome 16. Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes. These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region. NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens. These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regional specialization within the intestinal immune system.

              The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Gastroenterology & Hepatology
                Nat Rev Gastroenterol Hepatol
                Springer Science and Business Media LLC
                1759-5045
                1759-5053
                February 26 2020
                Article
                10.1038/s41575-019-0261-4
                32103203
                a28aa085-deae-4ab7-b77a-e010ff337c1c
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,646

                Cited by170

                Most referenced authors3,991