136
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNA fMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNA fMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNA fMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNA fMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNA fMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation.

          Author Summary

          Translation is the process by which a ribosome converts the sequence of a messenger RNA (mRNA)—produced from a gene—into the sequence of amino acids that comprise a protein. Bacterial ribosomes each have one large and one small subunit: the 50S and 30S subunits. Initiation of translation entails selection of an mRNA, identification of the correct starting point from which to read its code, and engagement of the initial amino acid carrier (tRNA). These events take place in the 30S subunit and require the presence of three initiation factors (IF1, IF2, IF3). Formation of this 30S initiation complex precedes joining with the 50S subunit to assemble the functional ribosome. By using a cryo-electron microscopy approach to visualize the structures without fixation or staining, we have determined the structure of a complete 30S initiation complex and identified the positions and orientations of the tRNA and all three initiation factors. We found that the presence of the initiation factors and tRNA induces rotation of the head relative to the body of the 30S subunit, which may be essential for rapid binding to the 50S subunit and for regulating selection of the mRNA. IF3 had not been seen previously in the context of the 30S structure and its visualization gives insight into a potential role in preventing association of the two ribosomal subunits. These findings are important for understanding how the interplay of elements during the early stages of translation selects the mRNA and regulates formation of functional ribosomes.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          A ratchet-like inter-subunit reorganization of the ribosome during translocation.

          The ribosome is a macromolecular assembly that is responsible for protein biosynthesis following genetic instructions in all organisms. It is composed of two unequal subunits: the smaller subunit binds messenger RNA and the anticodon end of transfer RNAs, and helps to decode the mRNA; and the larger subunit interacts with the amino-acid-carrying end of tRNAs and catalyses the formation of the peptide bonds. After peptide-bond formation, elongation factor G (EF-G) binds to the ribosome, triggering the translocation of peptidyl-tRNA from its aminoacyl site to the peptidyl site, and movement of mRNA by one codon. Here we analyse three-dimensional cryo-electron microscopy maps of the Escherichia coli 70S ribosome in various functional states, and show that both EF-G binding and subsequent GTP hydrolysis lead to ratchet-like rotations of the small 30S subunit relative to the large 50S subunit. Furthermore, our finding indicates a two-step mechanism of translocation: first, relative rotation of the subunits and opening of the mRNA channel following binding of GTP to EF-G; and second, advance of the mRNA/(tRNA)2 complex in the direction of the rotation of the 30S subunit, following GTP hydrolysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Initiation of protein synthesis in bacteria.

            Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The first section describes the ribosomal features relevant to the initiation process. Subsequent sections describe the structure, function, and interactions of the mRNA, the initiator tRNA, and the initiation factors IF1, IF2, and IF3. Finally, we provide an overview of mechanisms of regulation of the translation initiation event. Translation occurs on ribonucleoprotein complexes called ribosomes. The ribosome is composed of a large subunit and a small subunit that hold the activities of peptidyltransfer and decode the triplet code of the mRNA, respectively. Translation initiation is promoted by IF1, IF2, and IF3, which mediate base pairing of the initiator tRNA anticodon to the mRNA initiation codon located in the ribosomal P-site. The mechanism of translation initiation differs for canonical and leaderless mRNAs, since the latter is dependent on the relative level of the initiation factors. Regulation of translation occurs primarily in the initiation phase. Secondary structures at the mRNA ribosomal binding site (RBS) inhibit translation initiation. The accessibility of the RBS is regulated by temperature and binding of small metabolites, proteins, or antisense RNAs. The future challenge is to obtain atomic-resolution structures of complete initiation complexes in order to understand the mechanism of translation initiation in molecular detail.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein structure fitting and refinement guided by cryo-EM density.

              For many macromolecular assemblies, both a cryo-electron microscopy map and atomic structures of its component proteins are available. Here we describe a method for fitting and refining a component structure within its map at intermediate resolution (<15 A). The atomic positions are optimized with respect to a scoring function that includes the crosscorrelation coefficient between the structure and the map as well as stereochemical and nonbonded interaction terms. A heuristic optimization that relies on a Monte Carlo search, a conjugate-gradients minimization, and simulated annealing molecular dynamics is applied to a series of subdivisions of the structure into progressively smaller rigid bodies. The method was tested on 15 proteins of known structure with 13 simulated maps and 3 experimentally determined maps. At approximately 10 A resolution, Calpha rmsd between the initial and final structures was reduced on average by approximately 53%. The method is automated and can refine both experimental and predicted atomic structures.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                July 2011
                July 2011
                5 July 2011
                : 9
                : 7
                : e1001095
                Affiliations
                [1 ]Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Parque Tecnológico de Bizkaia, Derio, Spain
                [2 ]Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
                [3 ]Department of Biochemistry and Molecular Biology. Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
                Charité - Universitätsmedizin Berlin, Germany
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: PJ PM MVR MV. Performed the experiments: PJ PM DG. Analyzed the data: PJ PM XA GL MVR MV. Wrote the paper: PJ PM MVR MV.

                Article
                PBIOLOGY-D-10-01380
                10.1371/journal.pbio.1001095
                3130014
                21750663
                a285cf0e-0578-45d5-9b6e-38948ce2953c
                Julián et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 December 2010
                : 24 May 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Protein Synthesis
                Macromolecular Assemblies
                Biophysics
                Macromolecular Assemblies

                Life sciences
                Life sciences

                Comments

                Comment on this article