12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Statistically reinforced machine learning for nonlinear patterns and variable interactions

      1 , 2 , 1 , 2
      Ecosphere
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Microbial diversity drives multifunctionality in terrestrial ecosystems

          Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Novel ecosystems: theoretical and management aspects of the new ecological world order

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The architecture of mutualistic networks minimizes competition and increases biodiversity.

              The main theories of biodiversity either neglect species interactions or assume that species interact randomly with each other. However, recent empirical work has revealed that ecological networks are highly structured, and the lack of a theory that takes into account the structure of interactions precludes further assessment of the implications of such network patterns for biodiversity. Here we use a combination of analytical and empirical approaches to quantify the influence of network architecture on the number of coexisting species. As a case study we consider mutualistic networks between plants and their animal pollinators or seed dispersers. These networks have been found to be highly nested, with the more specialist species interacting only with proper subsets of the species that interact with the more generalist. We show that nestedness reduces effective interspecific competition and enhances the number of coexisting species. Furthermore, we show that a nested network will naturally emerge if new species are more likely to enter the community where they have minimal competitive load. Nested networks seem to occur in many biological and social contexts, suggesting that our results are relevant in a wide range of fields.
                Bookmark

                Author and article information

                Journal
                Ecosphere
                Ecosphere
                Wiley
                21508925
                November 2017
                November 2017
                November 27 2017
                : 8
                : 11
                : e01976
                Affiliations
                [1 ]Institute of Biology; Freie Universität Berlin; D-14195 Berlin Germany
                [2 ]Berlin-Brandenburg Institute of Advanced Biodiversity Research; D-14195 Berlin Germany
                Article
                10.1002/ecs2.1976
                a2848d62-d508-4b06-b8c1-75b9fe19ae86
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article