1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete Mitochondrial Genomes and Phylogenetic Positions of Two Longicorn Beetles, Anoplophora glabripennis and Demonax pseudonotabilis (Coleoptera: Cerambycidae)

      , , ,
      Genes
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anoplophora glabripennis (Motschulsky, 1854) and Demonax pseudonotabilis Gressitt & Rondon, 1970 are two commonly found longicorn beetles from China. However, the lack of sufficient molecular data hinders the understanding of their evolution and phylogenetic relationships with other species of Cerambycidae. This study sequenced and assembled the complete mitochondrial genomes of the two species using the next-generation sequencing method. The mitogenomes of A. glabripennis and D. pseudonotabilis are 15,622 bp and 15,527 bp in length, respectively. The mitochondrial gene content and gene order of A. glabripennis and D. pseudonotabilis are highly conserved with other sequenced longicorn beetles. The calculation of nonsynonymous (Ka) and synonymous (Ks) substitution rates in PCGs indicated the existence of purifying selection in the two longicorn beetles. The phylogenetic analysis was conducted using the protein-coding gene sequences from available mitogenomes of Cerambycidae. The two species sequenced in this study are, respectively, grouped with their relatives from the same subfamily. The monophyly of Cerambycinae, Dorcasominae, Lamiinae, and Necydalinae was well-supported, whereas Lepturinae, Prioninae, and Spondylidinae were recovered as paraphyletic.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          MUSCLE: multiple sequence alignment with high accuracy and high throughput.

          We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            fastp: an ultra-fast all-in-one FASTQ preprocessor

            Abstract Motivation Quality control and preprocessing of FASTQ files are essential to providing clean data for downstream analysis. Traditionally, a different tool is used for each operation, such as quality control, adapter trimming and quality filtering. These tools are often insufficiently fast as most are developed using high-level programming languages (e.g. Python and Java) and provide limited multi-threading support. Reading and loading data multiple times also renders preprocessing slow and I/O inefficient. Results We developed fastp as an ultra-fast FASTQ preprocessor with useful quality control and data-filtering features. It can perform quality control, adapter trimming, quality filtering, per-read quality pruning and many other operations with a single scan of the FASTQ data. This tool is developed in C++ and has multi-threading support. Based on our evaluation, fastp is 2–5 times faster than other FASTQ preprocessing tools such as Trimmomatic or Cutadapt despite performing far more operations than similar tools. Availability and implementation The open-source code and corresponding instructions are available at https://github.com/OpenGene/fastp.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

              Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com
                Bookmark

                Author and article information

                Contributors
                Journal
                GENEG9
                Genes
                Genes
                MDPI AG
                2073-4425
                October 2022
                October 17 2022
                : 13
                : 10
                : 1881
                Article
                10.3390/genes13101881
                a27b93f4-11de-45b1-b180-10654b52390c
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article