58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa , and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: not found

          The expanding scope of antimicrobial peptide structures and their modes of action.

          Antimicrobial peptides (AMPs) are an integral part of the innate immune system that protect a host from invading pathogenic bacteria. To help overcome the problem of antimicrobial resistance, cationic AMPs are currently being considered as potential alternatives for antibiotics. Although extremely variable in length, amino acid composition and secondary structure, all peptides can adopt a distinct membrane-bound amphipathic conformation. Recent studies demonstrate that they achieve their antimicrobial activity by disrupting various key cellular processes. Some peptides can even use multiple mechanisms. Moreover, several intact proteins or protein fragments are now being shown to have inherent antimicrobial activity. A better understanding of the structure-activity relationships of AMPs is required to facilitate the rational design of novel antimicrobial agents. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America.

            The ongoing explosion of antibiotic-resistant infections continues to plague global and US health care. Meanwhile, an equally alarming decline has occurred in the research and development of new antibiotics to deal with the threat. In response to this microbial "perfect storm," in 2001, the federal Interagency Task Force on Antimicrobial Resistance released the "Action Plan to Combat Antimicrobial Resistance; Part 1: Domestic" to strengthen the response in the United States. The Infectious Diseases Society of America (IDSA) followed in 2004 with its own report, "Bad Bugs, No Drugs: As Antibiotic Discovery Stagnates, A Public Health Crisis Brews," which proposed incentives to reinvigorate pharmaceutical investment in antibiotic research and development. The IDSA's subsequent lobbying efforts led to the introduction of promising legislation in the 109 th US Congress (January 2005-December 2006). Unfortunately, the legislation was not enacted. During the 110 th Congress, the IDSA has continued to work with congressional leaders on promising legislation to address antibiotic-resistant infection. Nevertheless, despite intensive public relations and lobbying efforts, it remains unclear whether sufficiently robust legislation will be enacted. In the meantime, microbes continue to become more resistant, the antibiotic pipeline continues to diminish, and the majority of the public remains unaware of this critical situation. The result of insufficient federal funding; insufficient surveillance, prevention, and control; insufficient research and development activities; misguided regulation of antibiotics in agriculture and, in particular, for food animals; and insufficient overall coordination of US (and international) efforts could mean a literal return to the preantibiotic era for many types of infections. If we are to address the antimicrobial resistance crisis, a concerted, grassroots effort led by the medical community will be required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofilms in chronic wounds.

              Chronic wounds including diabetic foot ulcers, pressure ulcers, and venous leg ulcers are a worldwide health problem. It has been speculated that bacteria colonizing chronic wounds exist as highly persistent biofilm communities. This research examined chronic and acute wounds for biofilms and characterized microorganisms inhabiting these wounds. Chronic wound specimens were obtained from 77 subjects and acute wound specimens were obtained from 16 subjects. Culture data were collected using standard clinical techniques. Light and scanning electron microscopy techniques were used to analyze 50 of the chronic wound specimens and the 16 acute wound specimens. Molecular analyses were performed on the remaining 27 chronic wound specimens using denaturing gradient gel electrophoresis and sequence analysis. Of the 50 chronic wound specimens evaluated by microscopy, 30 were characterized as containing biofilm (60%), whereas only one of the 16 acute wound specimens was characterized as containing biofilm (6%). This was a statistically significant difference (p<0.001). Molecular analyses of chronic wound specimens revealed diverse polymicrobial communities and the presence of bacteria, including strictly anaerobic bacteria, not revealed by culture. Bacterial biofilm prevalence in specimens from chronic wounds relative to acute wounds observed in this study provides evidence that biofilms may be abundant in chronic wounds.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                28 March 2018
                2018
                : 9
                : 281
                Affiliations
                [1] 1Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin , Berlin, Germany
                [2] 2Brandenburg Antiinfektiva GmbH , Borstel, Germany
                Author notes

                Edited by: Ajay Sharma, Chapman University, United States

                Reviewed by: István Pócsi, University of Debrecen, Hungary; Pio Maria Furneri, Università degli Studi di Catania, Italy

                *Correspondence: Günther Weindl guenther.weindl@ 123456fu-berlin.de

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.00281
                5882822
                29643807
                a27ae1a6-7ce0-4893-9a4e-7332fe922c75
                Copyright © 2018 Pfalzgraff, Brandenburg and Weindl.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 January 2018
                : 13 March 2018
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 240, Pages: 23, Words: 20083
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                antimicrobial peptides,topical therapy,skin and soft tissue infections,wounds,wound healing,bacterial resistance,biofilms,bacterial toxins

                Comments

                Comment on this article