11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regressive Evolution in Astyanax Cavefish

      1
      Annual Review of Genetics
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A diverse group of animals, including members of most major phyla, have adapted to life in the perpetual darkness of caves. These animals are united by the convergence of two regressive phenotypes, loss of eyes and pigmentation. The mechanisms of regressive evolution are poorly understood. The teleost Astyanax mexicanus is of special significance in studies of regressive evolution in cave animals. This species includes an ancestral surface dwelling form and many con-specific cave-dwelling forms, some of which have evolved their recessive phenotypes independently. Recent advances in Astyanax development and genetics have provided new information about how eyes and pigment are lost during cavefish evolution; namely, they have revealed some of the molecular and cellular mechanisms involved in trait modification, the number and identity of the underlying genes and mutations, the molecular basis of parallel evolution, and the evolutionary forces driving adaptation to the cave environment.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism.

          The genetic basis of vertebrate morphological evolution has traditionally been very difficult to examine in naturally occurring populations. Here we describe the generation of a genome-wide linkage map to allow quantitative trait analysis of evolutionarily derived morphologies in the Mexican cave tetra, a species that has, in a series of independent caves, repeatedly evolved specialized characteristics adapted to a unique and well-studied ecological environment. We focused on the trait of albinism and discovered that it is linked to Oca2, a known pigmentation gene, in two cave populations. We found different deletions in Oca2 in each population and, using a cell-based assay, showed that both cause loss of function of the corresponding protein, OCA2. Thus, the two cave populations evolved albinism independently, through similar mutational events.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The cave environment.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cavefish as a model system in evolutionary developmental biology.

              The Mexican tetra Astyanax mexicanus has many of the favorable attributes that have made the zebrafish a model system in developmental biology. The existence of eyed surface (surface fish) and blind cave (cavefish) dwelling forms in Astyanax also provides an attractive system for studying the evolution of developmental mechanisms. The polarity of evolutionary changes and the environmental conditions leading to the cavefish phenotype are known with certainty, and several different cavefish populations have evolved constructive and regressive changes independently. The constructive changes include enhancement of the feeding apparatus (jaws, taste buds, and teeth) and the mechanosensory system of cranial neuromasts. The homeobox gene Prox 1, which is expressed in the expanded taste buds and cranial neuromasts, is one of the genes involved in the constructive changes in sensory organ development. The regressive changes include loss of pigmentation and eye degeneration. Although adult cavefish lack functional eyes, small eye primordia are formed during embryogenesis, which later arrest in development, degenerate, and sink into the orbit. Apoptosis and lens signaling to other eye parts, such as the cornea, iris, and retina, result in the arrest of eye development and ultimate optic degeneration. Accordingly, an eye with restored cornea, iris, and retinal photoreceptor cells is formed when a surface fish lens is transplanted into a cavefish optic cup, indicating that cavefish optic tissues have conserved the ability to respond to lens signaling. Genetic analysis indicates that multiple genes regulate eye degeneration, and molecular studies suggest that Pax6 may be one of the genes controlling cavefish eye degeneration. Further studies of the Astyanax system will contribute to our understanding of the evolution of developmental mechanisms in vertebrates.
                Bookmark

                Author and article information

                Journal
                Annual Review of Genetics
                Annu. Rev. Genet.
                Annual Reviews
                0066-4197
                1545-2948
                December 01 2009
                December 01 2009
                : 43
                : 1
                : 25-47
                Affiliations
                [1 ]Department of Biology, University of Maryland, College Park, Maryland 20742;
                Article
                10.1146/annurev-genet-102108-134216
                3594788
                19640230
                a2726082-b71e-406b-aa83-4bd4427f511b
                © 2009
                History

                Comments

                Comment on this article