3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The SPANX gene family of cancer/testis-specific antigens: Rapid evolution and amplification in African great apes and hominids

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human sperm protein associated with the nucleus on the X chromosome (SPANX) genes comprise a gene family with five known members (SPANX-A1, -A2, -B, -C, and -D), encoding cancer/testis-specific antigens that are potential targets for cancer immunotherapy. These highly similar paralogous genes cluster on the X chromosome at Xq27. We isolated and sequenced primate genomic clones homologous to human SPANX. Analysis of these clones and search of the human genome sequence revealed an uncharacterized group of genes, SPANX-N, which are present in all primates as well as in mouse and rat. In humans, four SPANX-N genes comprise a series of tandem duplicates at Xq27; a fifth member of this subfamily is located at Xp11. Similarly to SPANX-A/D, human SPANX-N genes are expressed in normal testis and some melanoma cell lines; testis-specific expression of SPANX is also conserved in mouse. Analysis of the taxonomic distribution of the long and short forms of the intron indicates that SPANX-N is the ancestral form, from which the SPANX-A/D subfamily evolved in the common ancestor of the hominoid lineage. Strikingly, the coding sequences of the SPANX genes evolved much faster than the intron and the 5' untranslated region. There is a strong correlation between the rates of evolution of synonymous and nonsynonymous codon positions, both of which are accelerated 2-fold or more compared to the noncoding sequences. Thus, evolution of the SPANX family appears to have involved positive selection that affected not only the protein sequence but also the synonymous sites in the coding sequence.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Recent segmental duplications in the human genome.

          Primate-specific segmental duplications are considered important in human disease and evolution. The inability to distinguish between allelic and duplication sequence overlap has hampered their characterization as well as assembly and annotation of our genome. We developed a method whereby each public sequence is analyzed at the clone level for overrepresentation within a whole-genome shotgun sequence. This test has the ability to detect duplications larger than 15 kilobases irrespective of copy number, location, or high sequence similarity. We mapped 169 large regions flanked by highly similar duplications. Twenty-four of these hot spots of genomic instability have been associated with genetic disease. Our analysis indicates a highly nonrandom chromosomal and genic distribution of recent segmental duplications, with a likely role in expanding protein diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The rapid evolution of reproductive proteins.

            Many genes that mediate sexual reproduction, such as those involved in gamete recognition, diverge rapidly, often as a result of adaptive evolution. This widespread phenomenon might have important consequences, such as the establishment of barriers to fertilization that might lead to speciation. Sequence comparisons and functional studies are beginning to show the extent to which the rapid divergence of reproductive proteins is involved in the speciation process.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              MEGA2: molecular evolutionary genetics analysis software

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 02 2004
                March 02 2004
                February 18 2004
                March 02 2004
                : 101
                : 9
                : 3077-3082
                Article
                10.1073/pnas.0308532100
                365747
                14973187
                a27009a0-d02f-4a0a-aaf0-65a7605e3179
                © 2004
                History

                Comments

                Comment on this article