17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic uniformity, geographical spread and anthropogenic habitat modifications of lymnaeid vectors found in a One Health initiative in the highest human fascioliasis hyperendemic of the Bolivian Altiplano

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Fascioliasis is a snail-borne zoonotic trematodiasis emerging due to climate changes, anthropogenic environment modifications, and livestock movements. Many areas where Fasciola hepatica is endemic in humans have been described in Latin America altitude areas. Highest prevalences and intensities were reported from four provinces of the northern Bolivian Altiplano, where preventive chemotherapy is ongoing. New strategies are now incorporated to decrease infection/re-infection risk, assessment of human infection sources to enable efficient prevention measures, and additionally a One Health initiative in a selected zone. Subsequent extension of these pilot interventions to the remaining Altiplano is key.

          Methods

          To verify reproducibility throughout, 133 specimens from 25 lymnaeid populations representative of the whole Altiplano, and 11 used for population dynamics studies, were analyzed by rDNA ITS2 and ITS1 and mtDNA cox1 and 16S sequencing to assess their classification, variability and geographical spread.

          Results

          Lymnaeid populations proved to belong to a monomorphic group, Galba truncatula. Only a single cox1 mutation was found in a local population. Two cox1 haplotypes were new. Comparisons of transmission foci data from the 1990’s with those of 2018 demonstrated an endemic area expansion. Altitudinal, northward and southward expansions suggest movements of livestock transporting G. truncatula snails, with increasing temperatures transforming previously unsuitable habitats into suitable transmission areas. Transmission foci appear to be stable when compared to past field observations, except for those modified by human activities, including construction of new roads or control measures undertaken in relation to fascioliasis.

          Conclusions

          For a One Health initiative, the control of only one Fasciola species and snail vector species simplifies efforts because of the lower transmission complexity. Vector monomorphism suggests uniformity of vector population responses after control measure implementation. Hyperendemic area outer boundary instability suggests a climate change impact. All populations outside previously known boundaries were close to villages, human dwellings and/or schools, and should therefore be considered during disease control planning. The remarkable southward expansion implies that a fifth province, Aroma, should now be included within preventive chemotherapy programmes. This study highlights the need for lymnaeid molecular identification, transmission foci stability monitoring, and potential vector spread assessment.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Chapter 2. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control.

          Fascioliasis, caused by liver fluke species of the genus Fasciola, has always been well recognized because of its high veterinary impact but it has been among the most neglected diseases for decades with regard to human infection. However, the increasing importance of human fascioliasis worldwide has re-launched interest in fascioliasis. From the 1990s, many new concepts have been developed regarding human fascioliasis and these have furnished a new baseline for the human disease that is very different to a simple extrapolation from fascioliasis in livestock. Studies have shown that human fascioliasis presents marked heterogeneity, including different epidemiological situations and transmission patterns in different endemic areas. This heterogeneity, added to the present emergence/re-emergence of the disease both in humans and animals in many regions, confirms a worrying global scenario. The huge negative impact of fascioliasis on human communities demands rapid action. When analyzing how better to define control measures for endemic areas differing at such a level, it would be useful to have genetic markers that could distinguish each type of transmission pattern and epidemiological situation. Accordingly, this chapter covers aspects of aetiology, geographical distribution, epidemiology, transmission and control in order to obtain a solid baseline for the interpretation of future results. The origins and geographical spread of F. hepatica and F. gigantica in both the ruminant pre-domestication times and the livestock post-domestication period are analyzed. Paleontological, archaeological and historical records, as well as genetic data on recent dispersal of livestock species, are taken into account to establish an evolutionary framework for the two fasciolids across all continents. Emphasis is given to the distributional overlap of both species and the roles of transportation, transhumance and trade in the different overlap situations. Areas with only one Fasciola spp. are distinguished from local and zonal overlaps in areas where both fasciolids co-exist. Genetic techniques applied to liver flukes in recent years that are useful to elucidate the genetic characteristics of the two fasciolids are reviewed. The intra-specific and inter-specific variabilities of 'pure'F. hepatica and 'pure'F. gigantica were ascertained by means of complete sequences of ribosomal deoxyribonucleic acid (rDNA) internal transcribed spacer (ITS)-2 and ITS-1 and mitochondrial deoxyribonucleic acid (mtDNA) cox1 and nad1 from areas with only one fasciolid species. Fasciolid sequences of the same markers scattered in the literature are reviewed. The definitive haplotypes established appear to fit the proposed global evolutionary scenario. Problems posed by fasciolid cross-breeding, introgression and hybridization in overlap areas are analyzed. Nuclear rDNA appears to correlate with adult fluke characteristics and fasciolid/lymnaeid specificity, whereas mtDNA does not. However, flukes sometimes appear so intermediate that they cannot be ascribed to either F. hepatica-like or F. gigantica-like forms and snail specificity may be opposite to the one deduced from the adult morphotype. The phenotypic characteristics of adults and eggs of 'pure'F. hepatica and F. gigantica, as well as of intermediate forms in overlap areas, are compared, with emphasis on the definitive host influence on egg size in humans. Knowledge is sufficient to support F. hepatica and F. gigantica as two valid species, which recently diverged by adaptation to different pecoran and lymnaeid hosts in areas with differing environmental characteristics. Their phenotypic differences and ancient pre-domestication origins involve a broad geographical area that largely exceeds the typical, more local scenarios known for sub-species units. Phenomena such as abnormal ploidy and aspermic parthenogenesis in hybrids suggest that their separate evolution in pre-domestication times allowed them to achieve almost total genetic isolation. Recent sequencing results suggest that present assumptions on fasciolid-lymnaeid specificity might be wrong. The crucial role of lymnaeids in fascioliasis transmission, epidemiology and control was the reason for launching a worldwide lymnaeid molecular characterization initiative. This initiative has already furnished useful results on several continents. A standardized methodology for fasciolids and lymnaeids is proposed herein in order that future work is undertaken on a comparable basis. A complete understanding of molecular epidemiology is expected to help greatly in designing global actions and local interventions for control of fascioliasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology of fascioliasis in human endemic areas.

            S Mas-Coma (2005)
            Considered a secondary zoonotic disease until the mid-1990s, human fascioliasis is at present emerging or re-emerging in many countries, including increases of prevalence and intensity and geographical expansion. Research in recent years has justified the inclusion of fascioliasis in the list of important human parasitic diseases. At present, fascioliasis is a vector-borne disease presenting the widest known latitudinal, longitudinal and altitudinal distribution. Fasciola hepatica has succeeded in expanding from its European original geographical area to colonize five continents, despite theoretical restrictions related to its biology and in turn dependent upon environmental and human activities. Among the different epidemiological situations, human hypo- to hyperendemic areas, including epidemics, are noteworthy. A global analysis of the distribution of human cases shows that the expected correlation between animal and human fascioliasis only appears at a basic level. Areas presenting very high human prevalences and intensities, especially in children and females, have been recently described. In hypo- to hyperendemic areas of Central and South America, Europe, Africa and Asia, human fascioliasis presents a range of epidemiological characteristics related to a wide diversity of environments. Thus far well-known epidemiological patterns of fascioliasis may not always explain the transmission characteristics in any given area and control measures should consider the results of ecoepidemiological studies undertaken in the zones concerned.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis.

              The capacity of climatic conditions to modulate the extent and intensity of parasitism is well known since long ago. Concerning helminths, among the numerous environmental modifications giving rise to changes in infections, climate variables appear as those showing a greater influence, so that climate change may be expected to have an important impact on the diseases they cause. However, the confirmation of the impact of climate change on helminthiases has been reached very recently. Only shortly before, helminthiases were still noted as infectious diseases scarcely affected by climate change, when compared to diseases caused by microorganisms in general (viruses, bacteriae, protozoans). The aim of the present paper is to review the impact of climate change on helminthiases transmitted by snails, invertebrates which are pronouncedly affected by meteorological factors, by focusing on trematodiases. First, the knowledge on the effects of climate change on trematodiases in general is reviewed, including aspects such as influence of temperature on cercarial output, cercarial production variability in trematode species, influences of magnitude of cercarial production and snail host size, cercarial quality, duration of cercarial production increase and host mortality, influence of latitude, and global-warming-induced impact of trematodes. Secondly, important zoonotic diseases such as fascioliasis, schistosomiasis and cercarial dermatitis are analysed from the point of view of their relationships with meteorological factors. Emphasis is given to data which indicate that climate change influences the characteristics of these trematodiases in concrete areas where these diseases are emerging in recent years. The present review shows that trematodes, similarly as other helminths presenting larval stages living freely in the environment and/or larval stages parasitic in invertebrates easily affected by climate change as arthropods and molluscs as intermediate hosts, may be largely more susceptible to climate change impact than those helminths in whose life cycle such phases are absent or reduced to a minimum. Although helminths also appear to be affected by climate change, their main difference with microparasites lies on the usually longer life cycles of helminths, with longer generation times, slower population growth rates and longer time period needed for the response in the definitive host to become evident. Consequently, after a pronounced climate change in a local area, modifications in helminth populations need more time to be obvious or detectable than modifications in microparasite populations. Similarly, the relation of changes in a helminthiasis with climatic factor changes, as extreme events elapsed relatively long time ago, may be overlooked if not concretely searched for. All indicates that this phenomenon has been the reason for previous analyses to conclude that helminthiases do not constitute priority targets in climate change impact studies.
                Bookmark

                Author and article information

                Contributors
                M.D.Bargues@uv.es
                Patricio.Artigas@uv.es
                anglesrene@hotmail.es , reneanglesr@gmail.com
                David.Osca@uv.es
                pamela.duran.toledo@gmail.com
                pbuchon31@gmail.com
                karinagonzalesp@gmail.com
                julio.julpin@gmail.com
                S.Mas.Coma@uv.es
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                6 April 2020
                6 April 2020
                2020
                : 13
                : 171
                Affiliations
                [1 ]GRID grid.5338.d, ISNI 0000 0001 2173 938X, Departamento de Parasitología, Facultad de Farmacia, , Universidad de Valencia, ; Av. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
                [2 ]GRID grid.10421.36, ISNI 0000 0001 1955 7325, Cátedra de Parasitología, Facultad de Medicina, , Universidad Mayor de San Andrés (UMSA), ; Av. Saavedra, Miraflores, La Paz, Bolivia
                [3 ]GRID grid.10421.36, ISNI 0000 0001 1955 7325, Unidad de Limnología, Instituto de Ecología, Universidad Mayor de San Andrés (UMSA), ; Campus Universitario de Cota Cota, Calle 27, La Paz, Bolivia
                Article
                4045
                10.1186/s13071-020-04045-x
                7137187
                32252808
                a2448752-8d08-489c-8962-d2f07fe24f9d
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 21 November 2019
                : 27 March 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004892, Agencia Española de Cooperación Internacional para el Desarrollo;
                Award ID: 2017/ACDE/001583
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100004493, International Atomic Energy Agency;
                Award ID: RLA5049
                Award Recipient :
                Funded by: ISCIII-MINECO/FEDER, Madrid, Spain
                Award ID: PI16/00520
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003751, Ministerio de Sanidad, Servicios Sociales e Igualdad;
                Award ID: RD16/0027/0023
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100011596, Conselleria d'Educació, Investigació, Cultura i Esport;
                Award ID: 2016/099
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003508, Universitat de València;
                Award ID: 2017/01
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Parasitology
                human fascioliasis,lymnaeids,galba truncatula,rdna,mtdna,geographical spread,habitat modifications,one health,northern bolivian altiplano

                Comments

                Comment on this article

                scite_

                Similar content148

                Cited by13

                Most referenced authors959