1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coupling nanobubbles in 2D lateral heterostructures

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Near-field enhancement and quenching of photoluminescence shows evidence of coupling between WS 2 and MoS 2 nanobubbles in 2D lateral heterostructures.

          Abstract

          Two-dimensional transition metal dichalcogenides provide flexible platforms for nanophotonic engineering due to their exceptional mechanical and optoelectronic properties. For example, continuous band gap tunability has been achieved in 2D TMDs by elastic strain engineering. Localized elastic deformations in nanobubbles behave as “artificial atoms” with a spatially varying band gap resulting in funnelling of excitons and photocarriers. Here we present a new method of nanobubble fabrication in monolayer 2D lateral heterostructures using high temperature superacid treatment. We fabricated MoS 2 and WS 2 nanobubbles and performed near-field imaging with nanoscale resolution using tip-enhanced photoluminescence (TEPL) spectroscopy. TEPL nanoimaging revealed the coupling between MoS 2 and WS 2 nanobubbles with a large synergistic PL enhancement due to the plasmonic tip, hot electrons, and exciton funnelling. We investigated the contributions of different enhancement mechanisms, and developed a quantum plasmonic model, in good agreement with the experiments. Our work opens new avenues in exploration of novel nanophotonic coupling schemes.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease

          Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging photoluminescence in monolayer MoS2.

            Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS(2), a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS(2) crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS(2) provides new opportunities for engineering the electronic structure of matter at the nanoscale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Van der Waals heterostructures

              Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as 'van der Waals') have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene's springboard, van der Waals heterostructures should develop into a large field of their own.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                NANOHL
                Nanoscale
                Nanoscale
                Royal Society of Chemistry (RSC)
                2040-3364
                2040-3372
                June 09 2022
                2022
                : 14
                : 22
                : 8050-8059
                Affiliations
                [1 ]Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
                [2 ]Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
                [3 ]Department of Physics, University of South Florida, Tampa, FL 33620, USA
                [4 ]Materials Science Centre, India Institute of Technology, Kharagpur, India
                Article
                10.1039/D2NR00512C
                35587784
                a22c8dba-0593-4e2b-af4f-2622071fbb76
                © 2022

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article