1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exergy analysis of a new lignocellulosic biomass-based polygeneration system

      , , , , ,
      Energy
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrolysis of lignocellulosic materials for ethanol production: a review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coordinated development of leading biomass pretreatment technologies.

            For the first time, a single source of cellulosic biomass was pretreated by leading technologies using identical analytical methods to provide comparative performance data. In particular, ammonia explosion, aqueous ammonia recycle, controlled pH, dilute acid, flowthrough, and lime approaches were applied to prepare corn stover for subsequent biological conversion to sugars through a Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) among Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, and Texas A&M University. An Agricultural and Industrial Advisory Board provided guidance to the project. Pretreatment conditions were selected based on the extensive experience of the team with each of the technologies, and the resulting fluid and solid streams were characterized using standard methods. The data were used to close material balances, and energy balances were estimated for all processes. The digestibilities of the solids by a controlled supply of cellulase enzyme and the fermentability of the liquids were also assessed and used to guide selection of optimum pretreatment conditions. Economic assessments were applied based on the performance data to estimate each pretreatment cost on a consistent basis. Through this approach, comparative data were developed on sugar recovery from hemicellulose and cellulose by the combined pretreatment and enzymatic hydrolysis operations when applied to corn stover. This paper introduces the project and summarizes the shared methods for papers reporting results of this research in this special edition of Bioresource Technology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids.

              A number of previous studies determined dilute acid pretreatment conditions that maximize xylose yields from pretreatment or glucose yields from subsequent digestion of the pretreated cellulose, but our emphasis was on identifying conditions to realize the highest yields of both sugars from both stages. Thus, individual xylose and glucose yields are reported as a percentage of the total potential yield of both sugars over a range of sulfuric acid concentrations of 0.22%, 0.49% and 0.98% w/w at 140, 160, 180 and 200 degrees C. Up to 15% of the total potential sugar in the substrate could be released as glucose during pretreatment and between 15% and 90+% of the xylose remaining in the solid residue could be recovered in subsequent enzymatic hydrolysis, depending on the enzyme loading. Glucose yields increased from as high as 56% of total maximum potential glucose plus xylose for just enzymatic digestion to 60% when glucose released in pretreatment was included. Xylose yields similarly increased from as high as 34% of total potential sugars for pretreatment alone to between 35% and 37% when credit was taken for xylose released in digestion. Yields were shown to be much lower if no acid was used. Conditions that maximized individual sugar yields were often not the same as those that maximized total sugar yields, demonstrating the importance of clearly defining pretreatment goals when optimizing the process. Overall, up to about 92.5% of the total sugars originally available in the corn stover used could be recovered for coupled dilute acid pretreatment and enzymatic hydrolysis. These results also suggest that enhanced hemicellulase activity could further improve xylose yields, particularly for low cellulase loadings.
                Bookmark

                Author and article information

                Journal
                Energy
                Energy
                Elsevier BV
                03605442
                December 2017
                December 2017
                : 140
                : 1087-1095
                Article
                10.1016/j.energy.2017.09.040
                a206f158-a663-4e1b-90b3-edb9ee9f2415
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article