17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knockdown of long non-coding RNA PVT1 reverses multidrug resistance in colorectal cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multidrug resistance (MDR) is one of the primary causes of chemotherapy failure in colorectal cancer (CRC), and extensive biological studies into MDR are required. The non-coding RNA plasmacytoma variant translocation 1 (PVT1) has been demonstrated to be associated with low survival rates in patients with CRC. However, whether PVT1 serves a critical function in the MDR of CRC remains to be determined. To determine the association between PVT1 expression and 5-fluorouracil (5-FU) resistance in CRC, the expression levels of PVT1 mRNA in 5-FU-resistant CRC tissues and cell lines (HCT-8/5-FU and HCT-116/5-FU) were assessed by a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cytotoxicity was evaluated using a Cell Counting Kit-8 assay and apoptosis rates were assessed via flow cytometry. In the present study, PVT1 mRNA was highly expressed in 5-FU-resistant CRC tissues and cell lines. HCT-8/5-FU and HCT-116/5-FU cells transfected with small interfering RNA PVT1 and treated with 5-FU exhibited higher apoptotic rates and lower survival rates. By contrast, overexpression of PVT1 in HCT-8 and HCT-116 cells transfected with lentiviral vector-PVT1-green fluorescent protein and treated with 5-FU exhibited lower apoptosis rates and higher survival rates. RT-qPCR and western blotting demonstrated that the overexpression of PVT1 increased the mRNA and protein expression levels of multidrug resistance-associated protein 1, P-glycoprotein, serine/threonine-protein kinase mTOR and apoptosis regulator Bcl2. The present study indicates that PVT1 overexpression may promote MDR in CRC cells, and suggested that inhibition of PVT1 expression may be an effective therapeutic strategy for reversing MDR in CRC.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Estimates of cancer incidence and mortality in Europe in 2008.

          Up-to-date statistics on cancer occurrence and outcome are essential for the planning and evaluation of programmes for cancer control. Since the relevant information for 2008 is not generally available as yet, we used statistical models to estimate incidence and mortality data for 25 cancers in 40 European countries (grouped and individually) in 2008. The calculations are based on published data. If not collected, national rates were estimated from national mortality data and incidence and mortality data provided by local cancer registries of the same or neighbouring country. The estimated 2008 rates were applied to the corresponding country population estimates for 2008 to obtain an estimate of the numbers of cancer cases and deaths in Europe in 2008. There were an estimated 3.2 million new cases of cancer and 1.7 million deaths from cancer in 2008. The most common cancers were colorectal cancers (436,000 cases, 13.6% of the total), breast cancer (421,000, 13.1%), lung cancer (391,000, 12.2%) and prostate cancer (382,000, 11.9%). The most common causes of death from cancer were lung cancer (342,000 deaths, 19.9% of the total), colorectal cancer (212,000 deaths, 12.3%), breast cancer (129,000, 7.5%) and stomach cancer (117,000, 6.8%). Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches.

            Multi-drug resistance (MDR) has become the largest obstacle to the success of cancer chemotherapies. The mechanisms of MDR and the approaches to test MDR have been discovered, yet not fully understood. This review covers the in vivo and in vitro approaches for the detection of MDR in the laboratory and the mechanisms of MDR in cancers. This study also envisages the future developments toward the clinical and therapeutic applications of MDR in cancer treatment. Future therapeutics for cancer treatment will likely combine the existing therapies with drugs originated from MDR mechanisms such as anti-cancer stem cell drugs, anti-miRNA drugs or anti-epigenetic drugs. The challenges for the clinical detection of MDR will be to find new biomarkers and to determine new evaluation systems before the drug resistance emerges. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16

              Background Mounting evidence indicates that long noncoding RNAs (lncRNAs) could play a pivotal role in cancer biology. However, the overall biological role and clinical significance of PVT1 in gastric carcinogenesis remains largely unknown. Methods Expression of PVT1 was analyzed in 80 GC tissues and cell lines by qRT-PCR. The effect of PVT1 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by Flow-cytometric analysis. GC cells transfected with shPVT1 were injected into nude mice to study the effect of PVT1 on tumorigenesis in vivo. RIP was performed to confirm the interaction between PVT1 and EZH2. ChIP was used to study the promoter region of related genes. Results The higher expression of PVT1 was significantly correlated with deeper invasion depth and advanced TNM stage. Multivariate analyses revealed that PVT1 expression served as an independent predictor for overall survival (p = 0.031). Further experiments demonstrated that PVT1 knockdown significantly inhibited the proliferation both in vitro and in vivo. Importantly, we also showed that PVT1 played a key role in G1 arrest. Moreover, we further confirmed that PVT1 was associated with enhancer of zeste homolog 2 (EZH2) and that this association was required for the repression of p15 and p16. To our knowledge, this is the first report showed that the role and the mechanism of PVT1 in the progression of gastric cancer. Conclusions Together, these results suggest that lncRNA PVT1 may serve as a candidate prognostic biomarker and target for new therapies in human gastric cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0355-8) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                June 2018
                20 April 2018
                20 April 2018
                : 17
                : 6
                : 8309-8315
                Affiliations
                [1 ]The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
                [2 ]Department of General Surgery, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
                [3 ]Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
                Author notes
                Correspondence to: Professor Xue-Qing Yao, The Second School of Clinical Medicine, Southern Medical University, 1023 South Shatai Road, Baiyun, Guangzhou, Guangdong 510515, P.R. China, E-mail: syyaoxueqing@ 123456scut.edu.cn
                [*]

                Contributed equally

                Article
                mmr-17-06-8309
                10.3892/mmr.2018.8907
                5984006
                29693171
                a1854849-d258-4bf6-b793-5738cf5b507f
                Copyright: © Fan et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 25 December 2017
                : 22 March 2018
                Categories
                Articles

                colorectal cancer,long non-coding rna,pvt1,multidrug resistance

                Comments

                Comment on this article