49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−)- trans9-tetrahydrocannabinol (THC), (−)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB 1 and CB 2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects.

          Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7. © 2011 The Author. British Journal of Pharmacology © 2011 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical constituents of marijuana: the complex mixture of natural cannabinoids.

            The cannabis plant (Cannabis sativa L.) and products thereof (such as marijuana, hashish and hash oil) have a long history of use both as a medicinal agent and intoxicant. Over the last few years there have been an active debate regarding the medicinal aspects of cannabis. Currently cannabis products are classified as Schedule I drugs under the Drug Enforcement Administration (DEA) Controlled Substances act, which means that the drug is only available for human use as an investigational drug. In addition to the social aspects of the use of the drug and its abuse potential, the issue of approving it as a medicine is further complicated by the complexity of the chemical make up of the plant. This manuscript discusses the chemical constituents of the plant with particular emphasis on the cannabinoids as the class of compounds responsible for the drug's psychological properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial cannabinoids from Cannabis sativa: a structure-activity study.

              Marijuana (Cannabis sativa) has long been known to contain antibacterial cannabinoids, whose potential to address antibiotic resistance has not yet been investigated. All five major cannabinoids (cannabidiol (1b), cannabichromene (2), cannabigerol (3b), Delta (9)-tetrahydrocannabinol (4b), and cannabinol (5)) showed potent activity against a variety of methicillin-resistant Staphylococcus aureus (MRSA) strains of current clinical relevance. Activity was remarkably tolerant to the nature of the prenyl moiety, to its relative position compared to the n-pentyl moiety (abnormal cannabinoids), and to carboxylation of the resorcinyl moiety (pre-cannabinoids). Conversely, methylation and acetylation of the phenolic hydroxyls, esterification of the carboxylic group of pre-cannabinoids, and introduction of a second prenyl moiety were all detrimental for antibacterial activity. Taken together, these observations suggest that the prenyl moiety of cannabinoids serves mainly as a modulator of lipid affinity for the olivetol core, a per se poorly active antibacterial pharmacophore, while their high potency definitely suggests a specific, but yet elusive, mechanism of activity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                10 November 2017
                2017
                : 8
                : 1487
                Affiliations
                [1] 1Department of Physiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
                [2] 2Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
                [3] 3Department of Immunology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
                Author notes

                Edited by: Attila Szabo, University of Oslo, Norway

                Reviewed by: Anna Fogdell-Hahn, Karolinska Institute (KI), Sweden; Chiara Cordiglieri, Istituto Nazionale Genetica Molecolare (INGM), Italy

                *Correspondence: Tamás Bíró, biro.tamas@ 123456med.unideb.hu

                Specialty section: This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.01487
                5686045
                29176975
                a1221dc4-19d3-4a71-a9a7-f9eb9db6b66a
                Copyright © 2017 Oláh, Szekanecz and Bíró.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 August 2017
                : 23 October 2017
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 186, Pages: 14, Words: 11859
                Categories
                Immunology
                Review

                Immunology
                cannabinoid signaling,endocannabinoid,inflammation,immune response,phytocannabinoid,multiple sclerosis,tumor immunology,marijuana

                Comments

                Comment on this article