34
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Absence of Apparent Transmission of SARS-CoV-2 from Two Stylists After Exposure at a Hair Salon with a Universal Face Covering Policy — Springfield, Missouri, May 2020

      , , ,
      MMWR. Morbidity and Mortality Weekly Report
      Centers for Disease Control MMWR Office

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On May 12, 2020 (day 0), a hair stylist at salon A in Springfield, Missouri (stylist A), developed respiratory symptoms and continued working with clients until day 8, when the stylist received a positive test result for SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). A second hair stylist (stylist B), who had been exposed to stylist A, developed respiratory symptoms on May 15, 2020 (day 3), and worked with clients at salon A until day 8 before seeking testing for SARS-CoV-2, which returned a positive result on day 10. A total of 139 clients were directly serviced by stylists A and B from the time they developed symptoms until they took leave from work. Stylists A and B and the 139 clients followed the City of Springfield ordinance* and salon A policy recommending the use of face coverings (i.e., surgical masks, N95 respirators,† or cloth face coverings) for both stylists and clients during their interactions. Other stylists at salon A who worked closely with stylists A and B were identified, quarantined, and monitored daily for 14 days after their last exposure to stylists A or B. None of these stylists reported COVID-19 symptoms. After stylist B received a positive test result on day 10, salon A closed for 3 days to disinfect frequently touched and contaminated areas. After public health contact tracings and 2 weeks of follow-up, no COVID-19 symptoms were identified among the 139 exposed clients or their secondary contacts. The citywide ordinance and company policy might have played a role in preventing spread of SARS-CoV-2 during these exposures. These findings support the role of source control in preventing transmission and can inform the development of public health policy during the COVID-19 pandemic. As stay-at-home orders are lifted, professional and social interactions in the community will present more opportunities for spread of SARS-CoV-2. Broader implementation of masking policies could mitigate the spread of infection in the general population.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Temporal dynamics in viral shedding and transmissibility of COVID-19

          We report temporal patterns of viral shedding in 94 patients with laboratory-confirmed COVID-19 and modeled COVID-19 infectiousness profiles from a separate sample of 77 infector-infectee transmission pairs. We observed the highest viral load in throat swabs at the time of symptom onset, and inferred that infectiousness peaked on or before symptom onset. We estimated that 44% (95% confidence interval, 25-69%) of secondary cases were infected during the index cases' presymptomatic stage, in settings with substantial household clustering, active case finding and quarantine outside the home. Disease control measures should be adjusted to account for probable substantial presymptomatic transmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence of Asymptomatic SARS-CoV-2 Infection

            Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world since the first cases of coronavirus disease 2019 (COVID-19) were observed in December 2019 in Wuhan, China. It has been suspected that infected persons who remain asymptomatic play a significant role in the ongoing pandemic, but their relative number and effect have been uncertain. The authors sought to review and synthesize the available evidence on asymptomatic SARS-CoV-2 infection. Asymptomatic persons seem to account for approximately 40% to 45% of SARS-CoV-2 infections, and they can transmit the virus to others for an extended period, perhaps longer than 14 days. Asymptomatic infection may be associated with subclinical lung abnormalities, as detected by computed tomography. Because of the high risk for silent spread by asymptomatic persons, it is imperative that testing programs include those without symptoms. To supplement conventional diagnostic testing, which is constrained by capacity, cost, and its one-off nature, innovative tactics for public health surveillance, such as crowdsourcing digital wearable data and monitoring sewage sludge, might be helpful.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks

              The emergence of a pandemic affecting the respiratory system can result in a significant demand for face masks. This includes the use of cloth masks by large sections of the public, as can be seen during the current global spread of COVID-19. However, there is limited knowledge available on the performance of various commonly available fabrics used in cloth masks. Importantly, there is a need to evaluate filtration efficiencies as a function of aerosol particulate sizes in the 10 nm to 10 μm range, which is particularly relevant for respiratory virus transmission. We have carried out these studies for several common fabrics including cotton, silk, chiffon, flannel, various synthetics, and their combinations. Although the filtration efficiencies for various fabrics when a single layer was used ranged from 5 to 80% and 5 to 95% for particle sizes of 300 nm, respectively, the efficiencies improved when multiple layers were used and when using a specific combination of different fabrics. Filtration efficiencies of the hybrids (such as cotton–silk, cotton–chiffon, cotton–flannel) was >80% (for particles 90% (for particles >300 nm). We speculate that the enhanced performance of the hybrids is likely due to the combined effect of mechanical and electrostatic-based filtration. Cotton, the most widely used material for cloth masks performs better at higher weave densities (i.e., thread count) and can make a significant difference in filtration efficiencies. Our studies also imply that gaps (as caused by an improper fit of the mask) can result in over a 60% decrease in the filtration efficiency, implying the need for future cloth mask design studies to take into account issues of “fit” and leakage, while allowing the exhaled air to vent efficiently. Overall, we find that combinations of various commonly available fabrics used in cloth masks can potentially provide significant protection against the transmission of aerosol particles.
                Bookmark

                Author and article information

                Journal
                MMWR. Morbidity and Mortality Weekly Report
                MMWR Morb. Mortal. Wkly. Rep.
                Centers for Disease Control MMWR Office
                0149-2195
                1545-861X
                July 14 2020
                July 14 2020
                July 14 2020
                July 14 2020
                : 69
                : 28
                Article
                10.15585/mmwr.mm6928e2
                32673300
                a1114737-9b81-41b8-b798-9116ab4cebd7
                © 2020
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,572

                Cited by81

                Most referenced authors212