17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stellar Archaeology: a Keck Pilot Program on Extremely Metal- Poor Stars From the Hamburg/ESO Survey. III. The Lead (Pb) Star HE 0024-2523

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a detailed abundance analysis, including spectral syntheses, of a very metal-poor ([Fe/H]= -2.7), peculiar main sequence star, HE0024-2523 detected during the course of the Keck Pilot Program. Radial velocities of this star were obtained during four different observing runs over a time span of 1.1 years, and demonstrate that it is clearly a short period spectroscopic binary. An orbital solution was obtained, and orbital parameters were determined with high precision. The rotational velocity was also measured (vsin i=9.7\(\pm\)1.5 kms); rotation appears likely to be synchronous with the orbit. The abundance analysis and spectral syntheses indicate that the object is a CH star characterized by extreme s-process enrichment, likely due to mass accretion from an evolved companion which has now probably become a white dwarf. The lead (Pb) abundance of HE0024-2523 is very high, the same as that of the recently discovered lead-rich metal-poor star CS 29526-110, [Pb/Fe]=+3.3. The abundance ratio of the heavy-s to light-s elements, as characterized by Pb and Ba, [Pb/Ba]=+1.9, is the highest yet found for any metal-poor star, and is about 0.7 dex higher than that of CS29526-110. On the basis of the measured isotopic ratio of carbon (12C/13C about 6) we argue that the mass donor must have had an original mass of at least 3 Msun. The unusually short period of this CH star suggests that it underwent a past common-envelope phase with its evolved companion. Our results are compared to the latest available models for AGB yields and s-process nucleosynthesis. We also discuss the possible connection between HE0024-2523 the lithium depletion of halo stars, and halo blue straggler formation.

          Related collections

          Author and article information

          Journal
          04 November 2002
          Article
          10.1086/345886
          astro-ph/0211050
          a0c29abc-bef5-4959-9536-7bacd0681612
          History
          Custom metadata
          55 pages, 17 color figures included; Accepted for publication in the February 2003 issue of the Astronomical Journal
          astro-ph

          Comments

          Comment on this article