Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of brain renin angiotensin system in neurodegeneration: An update

      review-article
      , *
      Saudi Journal of Biological Sciences
      Elsevier
      Brain, RAS, Angiotensin, Neurodegeneration, Neuroprotection

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Renin angiotensin system (RAS) is an endocrine system widely known for its physiological roles in electrolyte homeostasis, body fluid volume regulation and cardiovascular control in peripheral circulation. However, brain RAS is an independent form of RAS expressed locally in the brain, which is known to be involved in brain functions and disorders. There is strong evidence for a major involvement of excessive brain angiotensin converting enzyme (ACE)/Angiotensin II (Ang II)/Angiotensin type-1 receptor (AT-1R) axis in increased activation of oxidative stress, apoptosis and neuroinflammation causing neurodegeneration in several brain disorders. Numerous studies have demonstrated strong neuroprotective effects by blocking AT1R in these brain disorders. Additionally, the angiotensin converting enzyme 2 (ACE2)/Angiotensin (1–7)/Mas receptor (MASR), is another axis of brain RAS which counteracts the damaging effects of ACE/Ang II/AT1R axis on neurons in the brain. Thus, angiotensin II receptor blockers (ARBs) and activation of ACE2/Angiotensin (1–7)/MASR axis may serve as an exciting and novel method for neuroprotection in several neurodegenerative diseases. Here in this review article, we discuss the expression of RAS in the brain and highlight how altered RAS level may cause neurodegeneration. Understanding the pathophysiology of RAS and their links to neurodegeneration has enormous potential to identify potentially effective pharmacological tools to treat neurodegenerative diseases in the brain.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy

          Acute ischemic stroke is a common cause of morbidity and mortality worldwide. Thrombolysis with recombinant tissue plasminogen activator and endovascular thrombectomy are the main revascularization therapies for acute ischemic stroke. However, ischemia-reperfusion injury after revascularization therapy can result in worsening outcomes. Among all possible pathological mechanisms of ischemia-reperfusion injury, free radical damage (mainly oxidative/nitrosative stress injury) has been found to play a key role in the process. Free radicals lead to protein dysfunction, DNA damage, and lipid peroxidation, resulting in cell death. Additionally, free radical damage has a strong connection with inducing hemorrhagic transformation and cerebral edema, which are the major complications of revascularization therapy, and mainly influencing neurological outcomes due to the disruption of the blood-brain barrier. In order to get a better clinical prognosis, more and more studies focus on the pharmaceutical and nonpharmaceutical neuroprotective therapies against free radical damage. This review discusses the pathological mechanisms of free radicals in ischemia-reperfusion injury and adjunctive neuroprotective therapies combined with revascularization therapy against free radical damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Classical Renin-Angiotensin system in kidney physiology.

            The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease.

              High blood pressure and stroke are associated with increased risks of dementia and cognitive impairment. This study aimed to determine whether blood pressure lowering would reduce the risks of dementia and cognitive decline among individuals with cerebrovascular disease. The Perindopril Protection Against Recurrent Stroke Study (PROGRESS) was a randomized, double-blind, placebo-controlled trial conducted among 6105 people with prior stroke or transient ischemic attack. Participants were assigned to either active treatment (perindopril for all participants and indapamide for those with neither an indication for nor a contraindication to a diuretic) or matching placebo(s). The primary outcomes for these analyses were dementia (using DSM-IV criteria) and cognitive decline (a decline of 3 or more points in the Mini-Mental State Examination score). During a mean follow-up of 3.9 years, dementia was documented in 193 (6.3%) of the 3051 randomized participants in the actively treated group and 217 (7.1%) of the 3054 randomized participants in the placebo group (relative risk reduction, 12% [95% confidence interval, -8% to 28%]; P =.2). Cognitive decline occurred in 9.1% of the actively treated group and 11.0% of the placebo group (risk reduction, 19% [95% confidence interval, 4% to 32%]; P =.01). The risks of the composite outcomes of dementia with recurrent stroke and of cognitive decline with recurrent stroke were reduced by 34% (95% confidence interval, 3% to 55%) (P =.03) and 45% (95% confidence interval, 21% to 61%) (P<.001), respectively, with no clear effect on either dementia or cognitive decline in the absence of recurrent stroke. Active treatment was associated with reduced risks of dementia and cognitive decline associated with recurrent stroke. These findings further support the recommendation that blood pressure lowering with perindopril and indapamide therapy be considered for all patients with cerebrovascular disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                30 January 2020
                March 2020
                30 January 2020
                : 27
                : 3
                : 905-912
                Affiliations
                Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
                Author notes
                [* ]Corresponding author at: 2A48, Department of Biochemistry, College of Science, PO Box: 2455, Building 5, King Saud University, Riyadh, Saudi Arabia. mola@ 123456ksu.edu.sa
                Article
                S1319-562X(20)30038-3
                10.1016/j.sjbs.2020.01.026
                7042626
                32127770
                a08a8382-6f0c-4b42-91d1-120916d44263
                © 2020 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 26 September 2019
                : 20 January 2020
                : 22 January 2020
                Categories
                Article

                brain,ras,angiotensin,neurodegeneration,neuroprotection
                brain, ras, angiotensin, neurodegeneration, neuroprotection

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content422

                Cited by57

                Most referenced authors1,153