11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice.

      Development (Cambridge, England)
      Animals, Base Sequence, Blotting, Western, Cell Differentiation, genetics, DNA Primers, Female, Fibroblast Growth Factor 1, physiology, Gene Expression, Genetic Techniques, Immunohistochemistry, In Situ Hybridization, Lens, Crystalline, abnormalities, embryology, Mice, Mice, Transgenic, Molecular Sequence Data, Polymerase Chain Reaction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The vertebrate ocular lens undergoes a spatially defined pattern of differentiation which may be regulated by the ocular distribution of proteins from the fibroblast growth factor (FGF) family. The ability of altered FGF-1 (acidic FGF) distribution to disrupt the normal pattern of lens differentiation was evaluated by the production of transgenic mice which express FGF-1 under the control of the lens-specific alpha A-crystallin promoter. Since FGF-1 lacks a classical signal peptide consensus sequence, transgenic mice were also produced with a chimeric construct containing the signal peptide sequence of the FGF-4 gene fused in frame to the coding sequences of the FGF-1 cDNA in order to obtain extracellular expression of the transgene. The presence of transgenic mRNA and protein was confirmed by in situ hybridization, Western analysis and immunohistochemistry. The ocular histology of newborn and young adult transgenic mice expressing FGF-1 without a signal peptide appeared normal. In contrast, mice expressing secreted FGF-1 exhibited lens abnormalities including the elongation of anterior epithelial cells. Epithelial cell elongation was accompanied by expression of the fiber cell differentiation marker, beta-crystallin. These observations provide an in vivo demonstration that FGF-1 can induce anterior lens epithelial cells to express characteristics consistent with the onset of fiber cell differentiation. The transgenic induction of differentiation confirms that normal lens morphology reflects an asymmetric distribution of inductive factors within the eye.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content172

          Cited by15