39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reversible Signal Binding by the Pseudomonas aeruginosa Quorum-Sensing Signal Receptor LasR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many members of the LuxR family of acyl-homoserine lactone (acyl-HSL)-dependent quorum-sensing transcriptional activators are thought to have the unusual characteristics of requiring the signal ligand during polypeptide synthesis to fold into an active conformation and of binding signal extraordinarily tightly. This is the case for the N-3-oxo-dodecanoyl-HSL-dependent Pseudomonas aeruginosa virulence regulator LasR. We present evidence that LasR can fold into an active conformation in vivo in the absence of the acyl-HSL ligand. We also present evidence indicating that in the cellular environment, LasR and N-3-oxo-dodecanoyl-HSL readily dissociate. After dissociation, LasR can remain in a properly folded conformation capable of reassociating with signal. We present a new model for the folding and signal binding of LasR and other members of the family of transcription factors to which LasR belongs. Our findings have important implications concerning the cellular responses to decreased environmental concentrations of signals and have implications about potential quorum-sensing inhibition strategies.

          IMPORTANCE

          The opportunistic pathogen Pseudomonas aeruginosa causes difficult to treat and incurable diseases. Quorum sensing controls expression of many virulence factors in this bacterium, and the quorum-sensing signal receptor LasR has been targeted for anti-quorum-sensing therapeutic development. The work described here changes the current view about how LasR interacts with the quorum-sensing signal to which it responds. This is of importance for therapeutic development. The experiments also address a poorly studied aspect of quorum sensing: the response to decreases in quorum-sensing signals. This has importance with respect to understanding the ecology and evolution of quorum sensing.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Quorum sensing: cell-to-cell communication in bacteria.

          Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers . This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Listening in on bacteria: acyl-homoserine lactone signalling.

            Bacterial cell-to-cell signalling has emerged as a new area in microbiology. Individual bacterial cells communicate with each other and co-ordinate group activities. Although a lot of detail is known about the mechanisms of a few well-characterized bacterial communication systems, other systems have been discovered only recently. Bacterial intercellular communication has become a target for the development of new anti-virulence drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression.

              We report the discovery of the lasR gene, which positively regulates elastase expression in Pseudomonas aeruginosa PAO1. The lasR gene was cloned by its ability to restore a positive elastase phenotype in strain PA103, a strain which possesses the elastase structural gene (lasB) but fails to synthesize the enzyme. Nucleotide sequence analysis revealed an open reading frame of 716 nucleotides encoding a protein of approximately 27 kDa. A labeled LasR protein of 27 kDa was detected in Escherichia coli by using a T7 RNA polymerase expression system. A chromosomal deletion mutant of the lasR gene was constructed in PAO1 by gene replacement. This mutant (PAO-R1) is devoid of elastolytic activity and elastase antigen. The deduced amino acid sequence of LasR is 27% homologous to the positive activator LuxR of Vibrio fischeri and the suspected activator 28K-UvrC of E. coli. Northern (RNA) analysis of total cellular RNA from PAO1, PAO-R1, and PAO-R1 containing the lasR gene on a multicopy plasmid (pMG1.7) revealed that a functional lasR gene is required for transcription of the elastase structural gene (lasB).
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                15 February 2011
                Jan-Feb 2011
                : 2
                : 1
                : e00011-11
                Affiliations
                Department of Microbiology [a ] and
                Division of Pulmonary and Critical Care Medicine, [b ] University of Washington, School of Medicine, Seattle, Washington, USA
                Author notes
                Address correspondence to E. Peter Greenberg, epgreen@ 123456u.washington.edu .

                Editor Richard Losick, Harvard University

                Article
                mBio00011-11
                10.1128/mBio.00011-11
                3039438
                21325039
                a0323fc7-dfb3-4288-a052-36fa50e8ec72
                Copyright © 2011 Sappington et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 January 2011
                : 18 January 2011
                Page count
                Pages: 6
                Categories
                Research Article

                Life sciences
                Life sciences

                Comments

                Comment on this article