5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      All in the family: proneural bHLH genes and neuronal diversity

      1 , 2
      Development
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Proneural basic Helix-Loop-Helix (bHLH) proteins are required for neuronal determination and the differentiation of most neural precursor cells. These transcription factors are expressed in vastly divergent organisms, ranging from sponges to primates. Here, we review proneural bHLH gene evolution and function in the Drosophila and vertebrate nervous systems, arguing that the Drosophila gene atonal provides a useful platform for understanding proneural gene structure and regulation. We also discuss how functional equivalency experiments using distinct proneural genes can reveal how proneural gene duplication and divergence are interwoven with neuronal complexity.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: not found
          • Article: not found

          The Structure of the Nervous System of the Nematode Caenorhabditis elegans

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Duplication and divergence: the evolution of new genes and old ideas.

            Over 35 years ago, Susumu Ohno stated that gene duplication was the single most important factor in evolution. He reiterated this point a few years later in proposing that without duplicated genes the creation of metazoans, vertebrates, and mammals from unicellular organisms would have been impossible. Such big leaps in evolution, he argued, required the creation of new gene loci with previously nonexistent functions. Bold statements such as these, combined with his proposal that at least one whole-genome duplication event facilitated the evolution of vertebrates, have made Ohno an icon in the literature on genome evolution. However, discussion on the occurrence and consequences of gene and genome duplication events has a much longer, and often neglected, history. Here we review literature dealing with the occurrence and consequences of gene duplication, beginning in 1911. We document conceptual and technological advances in gene duplication research from this early research in comparative cytology up to recent research on whole genomes, "transcriptomes," and "interactomes."
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preservation of duplicate genes by complementary, degenerative mutations.

              The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between entropic decay and chance acquisition of an advantageous regulatory mutation. Sidow 1996(p. 717) On one hand, it may fix an advantageous allele giving it a slightly different, and selectable, function from its original copy. This initial fixation provides substantial protection against future fixation of null mutations, allowing additional mutations to accumulate that refine functional differentiation. Alternatively, a duplicate locus can instead first fix a null allele, becoming a pseudogene. Walsh 1995 (p. 426) Duplicated genes persist only if mutations create new and essential protein functions, an event that is predicted to occur rarely. Nadeau and Sankoff 1997 (p. 1259) Thus overall, with complex metazoans, the major mechanism for retention of ancient gene duplicates would appear to have been the acquisition of novel expression sites for developmental genes, with its accompanying opportunity for new gene roles underlying the progressive extension of development itself. Cooke et al. 1997 (p. 362)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Development
                The Company of Biologists
                1477-9129
                0950-1991
                May 01 2018
                May 01 2018
                May 02 2018
                : 145
                : 9
                Affiliations
                [1 ]Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
                [2 ]Department of Cell Biology and Human Anatomy, University of California, One Shields Avenue, Davis, CA 95616 USA
                Article
                10.1242/dev.159426
                5992591
                29720483
                a02e3ead-516a-4a89-bf56-1479060fcab0
                © 2018

                http://www.biologists.com/user-licence-1-1

                History

                Comments

                Comment on this article