11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gene encoding ‘deleted in breast cancer 2' ( DBC2), also referred to as RHOBTB2 (Rho-related BTB domain-containing protein 2), is classified as a tumor suppressor gene. DBC2 is a substrate-specific adaptor protein for a novel class of Cullin-3 (CUL3)-based E3 ubiquitin ligases; however, it is unclear if the substrate adaptor function of DBC2 is required for its tumor suppressor activity. Furthermore, the key substrates of DBC2-mediated ubiquitination have yet to be identified. In the present study, we established a genome-wide human cDNA library-based in vitro ubiquitination target screening assay and identified Musashi-2 (MSI2) as a novel ubiquitination target protein of DBC2. MSI2 directly interacted with DBC2, and this interaction promoted MSI2 polyubiquitination and proteasomal degradation in breast cancer cells. Overexpression and knockdown experiments demonstrated that DBC2 suppressed MSI2-associated oncogenic functions and induced apoptosis. Immunohistochemistry analysis of a breast cancer tissue microarray revealed that DBC2 and MSI2 protein levels are inversely correlated in both normal breast tissues and breast cancer tissues. Taken together, these findings provide evidence that DBC2 suppresses tumorigenesis in breast cancer by ubiquitinating MSI2.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets

          Key Points Ubiquitin is a highly conserved 76 amino-acid protein that covalently attaches to protein substrates targeted for degradation by the 26S proteasome. The coordinated effort of a series of enzymes, including an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3), uses ATP to ultimately form an isopeptide bond between ubiquitin and a substrate. Another class of enzymes called deubiquitylating enzymes (DUBs) deconstruct these linkages and also have an essential role in ubiquitin function. In addition, ubiquitin-like proteins (UBLs), including NEDD8, SUMO and ISG15, share a characteristic three-dimensional fold with ubiquitin but have their own dedicated enzyme cascades and distinct (although sometimes overlapping) biological functions. The ubiquitin–proteasome system (UPS) and UBL conjugation pathways have important roles in various human diseases, including numerous types of cancer, cardiovascular disease, viral diseases and neurodegenerative disorders. The proteasome inhibitor bortezomib (Velcade; Millennium Pharmaceuticals) is the first clinically validated drug to target the UPS and is approved for the treatment of multiple myeloma. This suggests that other diseases may conceivably be targeted by modulating components of the UPS and UBL conjugation pathways using small-molecule inhibitors. A significant hurdle to identifying drug-like inhibitors of enzyme targets within the UPS and UBL conjugation pathways is the limited understanding of the molecular mechanisms and biological consequences of UBL conjugation. Here, we provide an overview of the enzyme classes in the UPS and UBL pathways that are potential therapeutic targets, and highlight considerations that are important for drug discovery. We also discuss the progress in the development of small-molecule inhibitors, and review developments in understanding of the role of the components of the UPS and the UBL pathways in disease and their potential for therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia.

            RNA-binding proteins of the Musashi (Msi) family are expressed in stem cell compartments and in aggressive tumors, but they have not yet been widely explored in the blood. Here we demonstrate that Msi2 is the predominant form expressed in hematopoietic stem cells (HSCs), and its knockdown leads to reduced engraftment and depletion of HSCs in vivo. Overexpression of human MSI2 in a mouse model increases HSC cell cycle progression and cooperates with the chronic myeloid leukemia-associated BCR-ABL1 oncoprotein to induce an aggressive leukemia. MSI2 is overexpressed in human myeloid leukemia cell lines, and its depletion leads to decreased proliferation and increased apoptosis. Expression levels in human myeloid leukemia directly correlate with decreased survival in patients with the disease, thereby defining MSI2 expression as a new prognostic marker and as a new target for therapy in acute myeloid leukemia (AML).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3.

              Programmed destruction of regulatory proteins through the ubiquitin-proteasome system is a widely used mechanism for controlling signalling pathways. Cullins are proteins that function as scaffolds for modular ubiquitin ligases typified by the SCF (Skp1-Cul1-F-box) complex. The substrate selectivity of these E3 ligases is dictated by a specificity module that binds cullins. In the SCF complex, this module is composed of Skp1, which binds directly to Cul1, and a member of the F-box family of proteins. F-box proteins bind Skp1 through the F-box motif, and substrates by means of carboxy-terminal protein interaction domains. Similarly, Cul2 and Cul5 interact with BC-box-containing specificity factors through the Skp1-like protein elongin C. Cul3 is required for embryonic development in mammals and Caenorhabditis elegans but its specificity module is unknown. Here we report the identification of a large family of BTB-domain proteins as substrate-specific adaptors for C. elegans CUL-3. Biochemical studies using the BTB protein MEL-26 and its genetic target MEI-1 (refs 12, 13) indicate that BTB proteins merge the functional properties of Skp1 and F-box proteins into a single polypeptide.
                Bookmark

                Author and article information

                Journal
                Oncogene
                Oncogene
                Oncogene
                Nature Publishing Group
                0950-9232
                1476-5594
                18 May 2017
                12 December 2016
                : 36
                : 20
                : 2802-2812
                Affiliations
                [1 ]KU Center for Integrated Science and Technology, Konkuk University , Seoul, South Korea
                [2 ]Korea Institute of Dermatological Sciences, 2nd Enterprise Research Building , Chungcheongbuk-do, South Korea
                [3 ]Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University, College of Medicine , Seoul, South Korea
                [4 ]Department of Pathology, Cheil General Hospital and Women's Healthcare Center, Dankook University, College of Medicine , Seoul, South Korea
                Author notes
                [* ]KU Center for Integrated Science and Technology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea. E-mail: sbae@ 123456konkuk.ac.kr
                Article
                onc2016441
                10.1038/onc.2016.441
                5442418
                27941885
                a02856b9-c6b4-4659-bea2-1a1cb5bc04b3
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 31 March 2016
                : 10 September 2016
                : 20 October 2016
                Categories
                Original Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article