31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drosophila melanogaster as a model organism for Alzheimer’s disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drosophila melanogaster provides an important resource for in vivo modifier screens of neurodegenerative diseases. To study the underlying pathogenesis of Alzheimer’s disease, fly models that address Tau or amyloid toxicity have been developed. Overexpression of human wild-type or mutant Tau causes age-dependent neurodegeneration, axonal transport defects and early death. Large-scale screens utilizing a neurodegenerative phenotype induced by eye-specific overexpression of human Tau have identified several kinases and phosphatases, apoptotic regulators and cytoskeleton proteins as determinants of Tau toxicity in vivo. The APP ortholog of Drosophila (dAPPl) shares the characteristic domains with vertebrate APP family members, but does not contain the human Aβ42 domain. To circumvent this drawback, researches have developed strategies by either direct secretion of human Aβ42 or triple transgenic flies expressing human APP, β-secretase and Drosophila γ-secretase presenilin (dPsn). Here, we provide a brief overview of how fly models of AD have contributed to our knowledge of the pathomechanisms of disease.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice.

          Transgenic mice overexpressing the 695-amino acid isoform of human Alzheimer beta-amyloid (Abeta) precursor protein containing a Lys670 --> Asn, Met671 --> Leu mutation had normal learning and memory in spatial reference and alternation tasks at 3 months of age but showed impairment by 9 to 10 months of age. A fivefold increase in Abeta(1-40) and a 14-fold increase in Abeta(1-42/43) accompanied the appearance of these behavioral deficits. Numerous Abeta plaques that stained with Congo red dye were present in cortical and limbic structures of mice with elevated amounts of Abeta. The correlative appearance of behavioral, biochemical, and pathological abnormalities reminiscent of Alzheimer's disease in these transgenic mice suggests new opportunities for exploring the pathophysiology and neurobiology of this disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative genomics of the eukaryotes.

            A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation.

              Several pathogenic Alzheimer's disease (AD) mutations have been described, all of which cause increased amyloid beta-protein (Abeta) levels. Here we present studies of a pathogenic amyloid precursor protein (APP) mutation, located within the Abeta sequence at codon 693 (E693G), that causes AD in a Swedish family. Carriers of this 'Arctic' mutation showed decreased Abeta42 and Abeta40 levels in plasma. Additionally, low levels of Abeta42 were detected in conditioned media from cells transfected with APPE693G. Fibrillization studies demonstrated no difference in fibrillization rate, but Abeta with the Arctic mutation formed protofibrils at a much higher rate and in larger quantities than wild-type (wt) Abeta. The finding of increased protofibril formation and decreased Abeta plasma levels in the Arctic AD may reflect an alternative pathogenic mechanism for AD involving rapid Abeta protofibril formation leading to accelerated buildup of insoluble Abeta intra- and/or extracellularly.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Neurodegener
                Mol Neurodegener
                Molecular Neurodegeneration
                BioMed Central
                1750-1326
                2013
                22 November 2013
                : 8
                : 35
                Affiliations
                [1 ]Department of Neurology, University Medical Center, RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany
                [2 ]Jülich-Aachen Research Alliance (JARA) Brain, 52074, Aachen, Germany
                [3 ]EURON - European Graduate School of Neuroscience, Aachen, Germany
                Article
                1750-1326-8-35
                10.1186/1750-1326-8-35
                4222597
                24267573
                a00aee2e-e019-498e-8ca3-bce21e462ba0
                Copyright © 2013 Prüßing et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 June 2013
                : 13 November 2013
                Categories
                Review

                Neurosciences
                drosophila melanogaster,amyloid-β,tau,alzheimer’s disease
                Neurosciences
                drosophila melanogaster, amyloid-β, tau, alzheimer’s disease

                Comments

                Comment on this article