Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Floral Plantings in Large-Scale Commercial Agroecosystems Support Both Pollinators and Arthropod Predators

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Pollinators and insect predators are in decline, largely due to commercial agricultural land use and practices. Planting a mixture of wildflowers in the unused margins of agricultural fields may help to conserve these insects and the important benefits that they provide (pollination and pest suppression). We compared wildflower plantings around commercial potato fields to unmanaged grass and weed margins to determine whether these plantings supported greater numbers of pollinators and predators. We found that wildflower plantings increased the numbers of both pollinators and predators within field margins. Additionally, margins with more flowers blooming led to more pollinators, although, interestingly, more flowers did not lead to more predators. This suggests that predators may benefit from wildflower plantings without needing the flowers they provide, while pollinators benefit from flowers specifically. When we measured pollinators and predators in the nearby potato crops, we found that wildflower plantings did not lead to greater numbers of pollinators or predators. Our results suggest that wildflower plantings can help conserve pollinators and predators in commercial agricultural areas, but that these beneficial insects do not move into adjacent crops, where they would be most likely to provide pollination or pest suppression services.

          Abstract

          Beneficial insect populations and the services that they provide are in decline, largely due to agricultural land use and practices. Establishing perennial floral plantings in the unused margins of crop fields can help conserve beneficial pollinators and predators in commercial agroecosystems. We assessed the impacts of floral plantings on both pollinators and arthropod predators when established adjacent to conventionally managed commercial potato fields. Floral plantings significantly increased the abundance of pollinators within floral margins compared with unmanaged margins. Increased floral cover within margins led to significantly greater pollinator abundance as well. The overall abundance of arthropod predators was also significantly increased in floral plantings, although it was unrelated to the amount of floral cover. Within adjacent potato crops, the presence of floral plantings in field margins had no effect on the abundance of pollinators or predators, although higher floral cover in margins did marginally increase in-crop pollinator abundance. Establishing floral plantings of this kind on a large scale in commercial agroecosystems can help conserve both pollinators and predators, but may not increase ecosystem services in nearby crops.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Solutions for a cultivated planet.

          Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Importance of pollinators in changing landscapes for world crops.

            The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global pollinator declines: trends, impacts and drivers.

              Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                21 January 2021
                February 2021
                : 12
                : 2
                : 91
                Affiliations
                [1 ]Department of Entomology, University of Minnesota, 1980 Folwell Ave, 219 Hodson Hall, Saint Paul, MN 55108, USA
                [2 ]Department of Entomology, University of Minnesota Northwest Research and Outreach Center, 2900 University Ave, Crookston, MN 56716, USA; imacrae@ 123456umn.edu
                [3 ]Department of Entomology, Virginia Tech, 170 Drillfield Drive, 220 Price Hall, Blacksburg, VA 24061, USA; philipsc@ 123456iskbc.com
                Author notes
                [* ]Correspondence: ericgmiddleton@ 123456gmail.com ; Tel.: +1-801-707-0426
                Author information
                https://orcid.org/0000-0002-3225-8124
                Article
                insects-12-00091
                10.3390/insects12020091
                7910871
                33494363
                9ff6250a-0322-4c8b-8235-c873419eb976
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 January 2021
                : 19 January 2021
                Categories
                Article

                agroecosystems,pollinators,predators,habitat management,floral plantings,floral resources

                Comments

                Comment on this article