0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional elucidation of the EIF4A3–circR-4225–miR-507–TNFSF11 regulatory axis in LUAD and its role in tumor progression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung adenocarcinoma (LUAD) is the most common subtypes of NSCLC. However, the therapeutic effects for LUAD are unsatisfactory at current stage, so it is important to find new molecular targets and therapeutic strategies. circRNAs can regulate the expression of target genes by binding to microRNAs (miRNAs) to form competitive endogenous RNAs (ceRNAs). Therefore, we investigated the functions of circR-4225 in the tumor progression of LUAD and its molecular mechanism in this paper. circR-4225 is up-regulated in LUAD tissues. EIF4A3, a member of the eukaryotic translation initiation factor 4A (EIF4A) family, promotes the expression of circR-4225. circR-4225 acts as a molecular sponge to down-regulate miR-507, which promotes the up-regulation of the expression of its target gene–tumor necrosis factor superfamily member 11 (TNFSF11). Knockdown of circR-4225 in the LUAD cell lines can inhibit cell proliferation and viability, and promote apoptosis of the LUAD cell lines, which can be reverted by inhibiting miR-507 or overexpressing TNFSF11. To sum it up, this study demonstrated that circR-4225 was significantly up-regulated in LUAD tissues, and circR-4225 promoted LUAD progression by sponging miR-507 and up-regulating TNFSF11. This study can provide new molecular targets for early diagnosis and treatment of LUAD.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2021

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?

            Here, we present a unifying hypothesis about how messenger RNAs, transcribed pseudogenes, and long noncoding RNAs "talk" to each other using microRNA response elements (MREs) as letters of a new language. We propose that this "competing endogenous RNA" (ceRNA) activity forms a large-scale regulatory network across the transcriptome, greatly expanding the functional genetic information in the human genome and playing important roles in pathological conditions, such as cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The biogenesis and emerging roles of circular RNAs.

              Circular RNAs (circRNAs) are produced from precursor mRNA (pre-mRNA) back-splicing of thousands of genes in eukaryotes. Although circRNAs are generally expressed at low levels, recent findings have shed new light on their cell type-specific and tissue-specific expression and on the regulation of their biogenesis. Furthermore, the data indicate that circRNAs shape gene expression by titrating microRNAs, regulating transcription and interfering with splicing, thus effectively expanding the diversity and complexity of eukaryotic transcriptomes.
                Bookmark

                Author and article information

                Contributors
                hhzeng@hactcm.edu.cn
                zhang_zhenqiang@126.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                28 August 2024
                28 August 2024
                2024
                : 14
                : 19972
                Affiliations
                [1 ]GRID grid.256922.8, ISNI 0000 0000 9139 560X, Academy of Chinese Medical Sciences, , Henan University of Chinese Medicine, ; Zhengzhou, 450000 China
                [2 ]School of Medical Sciences, Henan University of Chinese Medicine, ( https://ror.org/02my3bx32) Zhengzhou, 450000 China
                [3 ]Medical Oncology, LuoYang Central Hospital Affiliated to Zhengzhou University, ( https://ror.org/03cg5ap92) Luoyang, 471000 China
                Article
                70174
                10.1038/s41598-024-70174-3
                11358397
                39198460
                9fd138f7-ca22-49b0-a0fc-ec5e89282faa
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 25 March 2024
                : 13 August 2024
                Funding
                Funded by: Henan Province Science Foundation for Youths
                Award ID: Grant 222300420216
                Award Recipient :
                Funded by: Henan Province Science Foundation
                Award ID: Grant 222300420481
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                circrna,mirna,tumor progression,luad,eif4a3,cell biology,molecular biology
                Uncategorized
                circrna, mirna, tumor progression, luad, eif4a3, cell biology, molecular biology

                Comments

                Comment on this article