0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Jinkui Shenqi pills ameliorate diabetes by regulating hypothalamic insulin resistance and POMC/AgRP expression and activity

      , , , , , , ,
      Phytomedicine
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045

          To provide global, regional, and country-level estimates of diabetes prevalence and health expenditures for 2021 and projections for 2045.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production.

            Insulin action in the central nervous system regulates energy homeostasis and glucose metabolism. To define the insulin-responsive neurons that mediate these effects, we generated mice with selective inactivation of the insulin receptor (IR) in either pro-opiomelanocortin (POMC)- or agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus. While neither POMC- nor AgRP-restricted IR knockout mice exhibited altered energy homeostasis, insulin failed to normally suppress hepatic glucose production during euglycemic-hyperinsulinemic clamps in AgRP-IR knockout (IR(DeltaAgRP)) mice. These mice also exhibited reduced insulin-stimulated hepatic interleukin-6 expression and increased hepatic expression of glucose-6-phosphatase. These results directly demonstrate that insulin action in POMC and AgRP cells is not required for steady-state regulation of food intake and body weight. However, insulin action specifically in AgRP-expressing neurons does play a critical role in controlling hepatic glucose production and may provide a target for the treatment of insulin resistance in type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively.

              POMC-derived melanocortins inhibit food intake. In the adult rodent brain, POMC-expressing neurons are located in the arcuate nucleus (ARC) and the nucleus tractus solitarius (NTS), but it remains unclear how POMC neurons in these two brain nuclei regulate feeding behavior and metabolism differentially. Using pharmacogenetic methods to activate or deplete neuron groups in separate brain areas, in the present study, we show that POMC neurons in the ARC and NTS suppress feeding behavior at different time scales. Neurons were activated using the DREADD (designer receptors exclusively activated by designer drugs) method. The evolved human M3-muscarinic receptor was expressed in a selective population of POMC neurons by stereotaxic infusion of Cre-recombinase-dependent, adeno-associated virus vectors into the ARC or NTS of POMC-Cre mice. After injection of the human M3-muscarinic receptor ligand clozapine-N-oxide (1 mg/kg, i.p.), acute activation of NTS POMC neurons produced an immediate inhibition of feeding behavior. In contrast, chronic stimulation was required for ARC POMC neurons to suppress food intake. Using adeno-associated virus delivery of the diphtheria toxin receptor gene, we found that diphtheria toxin-induced ablation of POMC neurons in the ARC but not the NTS, increased food intake, reduced energy expenditure, and ultimately resulted in obesity and metabolic and endocrine disorders. Our results reveal different behavioral functions of POMC neurons in the ARC and NTS, suggesting that POMC neurons regulate feeding and energy homeostasis by integrating long-term adiposity signals from the hypothalamus and short-term satiety signals from the brainstem.
                Bookmark

                Author and article information

                Journal
                Phytomedicine
                Phytomedicine
                Elsevier BV
                09447113
                April 2024
                April 2024
                : 126
                : 155297
                Article
                10.1016/j.phymed.2023.155297
                9fafab24-239f-4a58-a215-1594f9e8cba4
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article