We use CORSIKA+Herwig simulation code to produce ultra-high energy neutrino interactions in the atmosphere. Our aim is to reproduce extensive air showers originated by extragalactic tau-neutrinos. For charged current tau-neutrino interactions in the atmosphere, beside the air shower originated from the neutrino interaction, it is expected that a tau is created and may decay before reaching the ground. That phenomenon makes possible the generation of two related extensive air showers, the so called Double-Bang event. We make an analysis of the main characteristics of Double-Bang events in the atmosphere for mean values of the parameters involved in such phenomenon, like the inelasticity and tau decay length. We discuss what may happen for the "out of the average" cases and conclude that it may be possible to observe this kind of event in ultra-high energy cosmic ray observatories such as Pierre Auger or Telescope Array.