2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transient docking of synaptic vesicles: Implications and mechanisms

      , ,
      Current Opinion in Neurobiology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Ultrafast endocytosis at mouse hippocampal synapses

          To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated ~20 s after fusion by the assembly of clathrin scaffolds or in ~1 s by the reversal of fusion pores via ‘kiss-and-run’ endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy – ‘flash-and-freeze’ electron microscopy. Docked vesicles fuse and collapse into the membrane within 30 ms of the stimulus. Compensatory endocytosis occurs with 50-100 ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover it is 200-fold faster than clathrin-mediated endocytosis. It is likely that ‘ultrafast endocytosis’ is specialized to rapidly restore the surface area of the membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Definition of the readily releasable pool of vesicles at hippocampal synapses.

            A readily releasable pool of quanta, tentatively identified with docked synaptic vesicles, has been defined by analysis of the neurotransmitter release caused by application of hypertonic solutions. The goal of this work is to determine the relationship of this functionally defined readily releasable pool to the one drawn upon by action potential-evoked release. We find that hypertonic solutions do not act through changes in intracellular calcium. Since the release produced by action potentials and hypertonic solutions varies in parallel as the pool size is changed, we conclude that the same pool is shared by both mechanisms. This conclusion, taken together with other observations in the literature, means that the synaptic release probability depends on the size of the readily releasable pool.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Short-term presynaptic plasticity.

              Different types of synapses are specialized to interpret spike trains in their own way by virtue of the complement of short-term synaptic plasticity mechanisms they possess. Numerous types of short-term, use-dependent synaptic plasticity regulate neurotransmitter release. Short-term depression is prominent after a single conditioning stimulus and recovers in seconds. Sustained presynaptic activation can result in more profound depression that recovers more slowly. An enhancement of release known as facilitation is prominent after single conditioning stimuli and lasts for hundreds of milliseconds. Finally, tetanic activation can enhance synaptic strength for tens of seconds to minutes through processes known as augmentation and posttetantic potentiation. Progress in clarifying the properties, mechanisms, and functional roles of these forms of short-term plasticity is reviewed here.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Neurobiology
                Current Opinion in Neurobiology
                Elsevier BV
                09594388
                June 2022
                June 2022
                : 74
                : 102535
                Article
                10.1016/j.conb.2022.102535
                35398664
                9f98a7d5-4b69-4b0b-8092-f1abee6213a9
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article