Group formation in living systems typically results from a delicate balance of repulsive, aligning, and attractive interactions. We found that a mere motility change of the individuals in response to the visual perception of their peers induces group formation and cohesion. We tested this principle in a real system of active particles whose motilities are controlled by an external feedback loop. For narrow fields of view, individuals gathered into cohesive nonpolarized groups without requiring active reorientations. For wider fields of view, cohesion could be achieved by lowering the response threshold. We expect this motility-induced cohesion mechanism to be relevant not only for the self-organization of living systems, but also for the design of robust and scalable autonomous systems.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.