0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid processing of fearful faces relies on the right amygdala: evidence from individuals undergoing unilateral temporal lobectomy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Facial expressions of emotions have been shown to modulate early ERP components, in particular the N170. The underlying anatomical structure producing these early effects are unclear. In this study, we examined the N170 enhancement for fearful expressions in healthy controls as well as epileptic patients after unilateral left or right amygdala resection. We observed a greater N170 for fearful faces in healthy participants as well as in individuals with left amygdala resections. By contrast, the effect was not observed in patients who had undergone surgery in which the right amygdala had been removed. This result demonstrates that the amygdala produces an early brain response to fearful faces. This early response relies specifically on the right amygdala and occurs at around 170 ms. It is likely that such increases are due to a heightened response of the extrastriate cortex that occurs through rapid amygdalofugal projections to the visual areas.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Conscious and unconscious emotional learning in the human amygdala.

          If subjects are shown an angry face as a target visual stimulus for less than forty milliseconds and are then immediately shown an expressionless mask, these subjects report seeing the mask but not the target. However, an aversively conditioned masked target can elicit an emotional response from subjects without being consciously perceived. Here we study the mechanism of this unconsciously mediated emotional learning. We measured neural activity in volunteer subjects who were presented with two angry faces, one of which, through previous classical conditioning, was associated with a burst of white noise. In half of the trials, the subjects' awareness of the angry faces was prevented by backward masking with a neutral face. A significant neural response was elicited in the right, but not left, amygdala to masked presentations of the conditioned angry face. Unmasked presentations of the same face produced enhanced neural activity in the left, but not right, amygdala. Our results indicate that, first, the human amygdala can discriminate between stimuli solely on the basis of their acquired behavioural significance, and second, this response is lateralized according to the subjects' level of awareness of the stimuli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural bases of the non-conscious perception of emotional signals.

            Many emotional stimuli are processed without being consciously perceived. Recent evidence indicates that subcortical structures have a substantial role in this processing. These structures are part of a phylogenetically ancient pathway that has specific functional properties and that interacts with cortical processes. There is now increasing evidence that non-consciously perceived emotional stimuli induce distinct neurophysiological changes and influence behaviour towards the consciously perceived world. Understanding the neural bases of the non-conscious perception of emotional signals will clarify the phylogenetic continuity of emotion systems across species and the integration of cortical and subcortical activity in the human brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rethinking the emotional brain.

              I propose a reconceptualization of key phenomena important in the study of emotion-those phenomena that reflect functions and circuits related to survival, and that are shared by humans and other animals. The approach shifts the focus from questions about whether emotions that humans consciously feel are also present in other animals, and toward questions about the extent to which circuits and corresponding functions that are present in other animals (survival circuits and functions) are also present in humans. Survival circuit functions are not causally related to emotional feelings but obviously contribute to these, at least indirectly. The survival circuit concept integrates ideas about emotion, motivation, reinforcement, and arousal in the effort to understand how organisms survive and thrive by detecting and responding to challenges and opportunities in daily life. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                a.pegna@uq.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                11 January 2021
                11 January 2021
                2021
                : 11
                : 426
                Affiliations
                [1 ]GRID grid.1003.2, ISNI 0000 0000 9320 7537, School of Psychology, , The University of Queensland, ; Saint Lucia, Brisbane, QLD 4068 Australia
                [2 ]GRID grid.150338.c, ISNI 0000 0001 0721 9812, Unit for Presurgical Evaluation of Epilepsy, Neurology Clinic, , Geneva University Hospitals, ; 1205 Geneva, Switzerland
                Article
                80054
                10.1038/s41598-020-80054-1
                7801587
                33432073
                9f7ce1c8-1ed7-43e9-9335-29e21ad3b364
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 4 August 2020
                : 10 December 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001711, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung;
                Award ID: P2GEP1_188266
                Award ID: #320030-144187
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                cognitive neuroscience,amygdala,visual system
                Uncategorized
                cognitive neuroscience, amygdala, visual system

                Comments

                Comment on this article