5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The mechanism of ginger and its processed products in the treatment of estradiol valerate coupled with oxytocin-induced dysmenorrhea in mice via regulating the TRP ion channel-mediated ERK 1/2/NF-κB signaling pathway

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mechanism of Ginger and its processed products in the treatment of estradiol valerate coupled with oxytocin-induced dysmenorrhea in mice via regulating the TRP ion channel-mediated ERK 1/2/NF-κB signaling pathway.

          Abstract

          Ginger (Rhizoma zingiberis, RZ) has been used as a food, spice, supplement, flavoring agent, and as an edible herbal medicine. It is characterized by its pungency and aroma, and is rich in nutrients with remarkable pharmacological effects. It is used in traditional medicine clinics to treat diseases and symptoms, such as colds, headache, and primary dysmenorrhea (PD). In China, a variety of processed products of RZ are used as herbal medicines, such as baked ginger (BG) or ginger charcoal (GC) to treat different diseases and symptoms. However, the molecular mechanism of the therapeutic effect of RZ and its processed products (RZPPs, including BG or GC) against PD has not been well characterized. Moreover, whether the transient receptor potential (TRP) ion channels are involved in this process is not clear. In the present study, UHPLC-Q-TOF MS was adopted to analyse the differential quality markers (DQMs) between RZ and RZPPs. In addition, differential metabolomics (DMs) was acquired between RZ- and RZPPs-treated estradiol valerate coupled with an oxytocin-induced PD mouse uterus using untargeted metabolomics (UM). A correlation analysis between DQMs and DMs was also conducted. Benzenoids, lipids, and lipid-like molecules were the main DQMs between RZ and RZPPs. RZ and RZPPs were found to improve the pathological status of the uterus of a PD mouse, with significantly decreased serum levels of E 2, PGF , TXB 2 and remarkably increased levels of PROG and 6-keto-PGF . Moreover, RZ and RZPPs alleviated PD in mice via regulating the TRP ion channel-mediated ERK 1/2/NF-κB signaling pathway. Our results indicate that the therapeutic effect of RZ and RZPPs against PD may be mediated by regulating the TRP ion channel-mediated ERK 1/2/NF-κB signaling pathway, and provide a reference for the development of new dietary supplements or medicines.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The TRP superfamily of cation channels.

          The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to Drosophila TRP. TRP channels play important roles in nonexcitable cells; however, an emerging theme is that many TRP-related proteins are expressed predominantly in the nervous system and function in sensory physiology. The TRP superfamily is divided into seven subfamilies, the first of which is composed of the "classical" TRPs" (TRPC subfamily). Some TRPCs may be store-operated channels, whereas others appear to be activated by production of diacylglycerol or regulated through an exocytotic mechanism. Many members of a second subfamily (TRPV) function in sensory physiology and respond to heat, changes in osmolarity, odorants, and mechanical stimuli. Two members of the TRPM family function in sensory perception and three TRPM proteins are chanzymes, which contain C-terminal enzyme domains. The fourth and fifth subfamilies, TRPN and TRPA, include proteins with many ankyrin repeats. TRPN proteins function in mechanotransduction, whereas TRPA1 is activated by noxious cold and is also required for the auditory response. In addition to these five closely related TRP subfamilies, which comprise the Group 1 TRPs, members of the two Group 2 TRP subfamilies, TRPP and TRPML, are distantly related to the group 1 TRPs. Mutations in the founding members of these latter subfamilies are responsible for human diseases. Each of the TRP subfamilies are represented by members in worms and flies, providing the potential for using genetic approaches to characterize the normal functions and activation mechanisms of these channels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What we know about primary dysmenorrhea today: a critical review.

            Primary dysmenorrhea, or painful menstruation in the absence of pelvic pathology, is a common, and often debilitating, gynecological condition that affects between 45 and 95% of menstruating women. Despite the high prevalence, dysmenorrhea is often poorly treated, and even disregarded, by health professionals, pain researchers, and the women themselves, who may accept it as a normal part of the menstrual cycle. This review reports on current knowledge, particularly with regards to the impact and consequences of recurrent menstrual pain on pain sensitivity, mood, quality of life and sleep in women with primary dysmenorrhea.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Molecular Choreography of Acute Exercise

                Bookmark

                Author and article information

                Contributors
                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                October 31 2022
                2022
                : 13
                : 21
                : 11236-11248
                Affiliations
                [1 ]College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, China
                [2 ]Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong 030619, Shanxi, China
                Article
                10.1039/D2FO01845D
                36222424
                9f6f3ff0-8486-403d-a592-a6db44ae837e
                © 2022

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article