7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.

          • Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized.

          • The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted.

          Abstract

          Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: not found
          • Article: not found

          The rise of graphene.

          Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            2D metal carbides and nitrides (MXenes) for energy storage

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-layer MoS2 transistors.

              Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
                Bookmark

                Author and article information

                Contributors
                jun@qdu.edu.cn
                mkumar@iitj.ac.in
                Journal
                Nanomicro Lett
                Nanomicro Lett
                Nano-Micro Letters
                Springer Singapore (Singapore )
                2311-6706
                2150-5551
                13 August 2020
                13 August 2020
                December 2020
                : 12
                : 164
                Affiliations
                [1 ]GRID grid.462385.e, ISNI 0000 0004 1775 4538, Department of Electrical Engineering, , Indian Institute of Technology Jodhpur, ; Jodhpur, 342037 India
                [2 ]GRID grid.410645.2, ISNI 0000 0001 0455 0905, College of Physics, , Center for Marine Observation and Communications, Qingdao University, ; Qingdao, 266071 People’s Republic of China
                [3 ]GRID grid.216938.7, ISNI 0000 0000 9878 7032, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), , Nankai University, ; Tianjin, 300071 People’s Republic of China
                Article
                503
                10.1007/s40820-020-00503-4
                7770837
                9f652fe9-6ee1-4374-b766-426e8e710965
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 May 2020
                : 15 July 2020
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                gas sensor,room temperature,photoactivation,metal oxide,2d materials

                Comments

                Comment on this article