12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chitosan-based smart hybrid materials: a physico-chemical perspective

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An overview of the properties of chitosan-based materials: polyelectrolyte complexes, gels, chitosan-surfactant complexes, smart coatings, organic–inorganic hybrids.

          Abstract

          Chitosan is one of the most studied cationic polysaccharides. Due to its unique characteristics of being water soluble, biocompatible, biodegradable, and non-toxic, this macromolecule is highly attractive for a broad range of applications. In addition, its complex behavior and the number of ways it interacts with different components in a system result in an astonishing variety of chitosan-based materials. Herein, we present recent advances in the field of chitosan-based materials from a physico-chemical perspective, with focus on aqueous mixtures with oppositely charged colloids, chitosan-based thin films, and nanocomposite systems. In this review, we focus our attention on the physico-chemical properties of chitosan-based materials, including solubility, mechanical resistance, barrier properties, and thermal behaviour, and provide a link to the chemical peculiarities of chitosan, such as its intrinsic low solubility, high rigidity, large charge separation, and strong tendency to form intra- and inter-molecular hydrogen bonds.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease

          Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chitin and chitosan: Properties and applications

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. II. LIQUIDS.1

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JMCBDV
                Journal of Materials Chemistry B
                J. Mater. Chem. B
                Royal Society of Chemistry (RSC)
                2050-750X
                2050-7518
                January 28 2021
                2021
                : 9
                : 3
                : 594-611
                Affiliations
                [1 ]Dipartimento di Fisica e Chimica
                [2 ]Università degli Studi di Palermo
                [3 ]90128 Palermo
                [4 ]Italy
                [5 ]Institut Max von Laue – Paul Langevin
                [6 ]38042 Grenoble
                [7 ]France
                Article
                10.1039/D0TB01865A
                33305783
                9f4ecf05-e14e-45d9-b878-711ff557c173
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content440

                Cited by46

                Most referenced authors9,780