Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease
There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
The acute or chronic drug treatments for different neurodegenerative and psychiatric disorders are challenging from several aspects. The low bioavailability and limited brain exposure of oral drugs, the rapid metabolism, elimination, the unwanted side effects and also the high dose to be added mean both inconvenience for the patients and high costs for the patients, their family and the society. The reason of low brain penetration of the compounds is that they have to overcome the blood-brain barrier which protects the brain against xenobiotics. Intranasal drug administration is one of the promising options to bypass blood-brain barrier, to reduce the systemic adverse effects of the drugs and to lower the doses to be administered. Furthermore, the drugs administered using nasal route have usually higher bioavailability, less side effects and result in higher brain exposure at similar dosage than the oral drugs. In this review the focus is on giving an overview on the anatomical and cellular structure of nasal cavity and absorption surface. It presents some possibilities to enhance the drug penetration through the nasal barrier and summarizes some in vitro, ex vivo and in vivo technologies to test the drug delivery across the nasal epithelium into the brain. Finally, the authors give a critical evaluation of the nasal route of administration showing its main advantages and limitations of this delivery route for CNS drug targeting.
The blood-brain barrier (BBB) limits the distribution of systemically administered therapeutics to the central nervous system (CNS), posing a significant challenge to drug development efforts to treat neurological and psychiatric diseases and disorders. Intranasal delivery is a noninvasive and convenient method that rapidly targets therapeutics to the CNS, bypassing the BBB and minimizing systemic exposure. This review focuses on the current understanding of the mechanisms underlying intranasal delivery to the CNS, with a discussion of pathways from the nasal cavity to the CNS involving the olfactory and trigeminal nerves, the vasculature, the cerebrospinal fluid, and the lymphatic system. In addition to the properties of the therapeutic, deposition of the drug formulation within the nasal passages and composition of the formulation can influence the pathway a therapeutic follows into the CNS after intranasal administration. Experimental factors, such as head position, volume, and method of administration, and formulation parameters, such as pH, osmolarity, or inclusion of permeation enhancers or mucoadhesives, can influence formulation deposition within the nasal passages and pathways followed into the CNS. Significant research will be required to develop and improve current intranasal treatments and careful consideration should be given to the factors discussed in this review. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.