2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbiological Studies on the Influence of Essential Oils from Several Origanum Species on Respiratory Pathogens

      , , , , , ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Essential oils (EOs) with established and well-known activities against human pathogens might become new therapeutics in multidrug-resistant bacterial infections, including respiratory tract infections. The aim of this study was to evaluate the antimicrobial activity of EOs obtained from several samples of Origanum vulgare, O. syriacum, and O. majorana cultivated in Poland. EOs were analyzed by GC-MS and tested against four bacterial strains: Staphylococcus aureus (MRSA), Haemophilus influenzae, Haemophilus parainfluenzae, and Pseudomonas aeruginosa. Chemical analyses showed that the Eos were characterized by a high diversity in composition. Based on the chemical data, four chemotypes of Origanum EOs were confirmed. These were carvacrol, terpineol/sabinene hydrate, caryophyllene oxide, and thymol chemotypes. Thin-layer chromatography-bioautography confirmed the presence of biologically active antibacterial components in all tested EOs. The highest number of active spots were found among EOs with cis-sabinene hydrate as the major compound. On the other hand, the largest spots of inhibition were characteristic to EOs of the carvacrol chemotype. Minimal inhibitory concentrations (MICs) were evaluated for the most active EOs: O. vulgare ‘Hirtum’, O. vulgare ‘Margarita’, O. vulgare ‘Hot & Spicy’, O. majorana, and O. syriacum (I) and (II); it was shown that both Haemophilus strains were the most sensitive with an MIC value of 0.15 mg/mL for all EOs. O. majorana EO was also the most active in the MIC assay and had the highest inhibitory rate in the anti-biofilm assay against all strains. The most characteristic components present in this EO were the trans-sabinene hydrate and terpinen-4-ol. The strain with the least sensitivity was the MRSA with an MIC of 0.6 mg/mL for all EOs except for O. majorana, where the MIC value reached 0.3 mg/mL. Scanning electron microscopy performed on the Haemophilus influenzae and Haemophilus parainfluenzae biofilms showed a visible decrease in the appearance of bacterial clusters under the influence of O. majorana EO.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates.

          In the present study six assays for the quantification of biofilms formed in 96-well microtiter plates were optimised and evaluated: the crystal violet (CV) assay, the Syto9 assay, the fluorescein diacetate (FDA) assay, the resazurin assay, the XTT assay and the dimethyl methylene blue (DMMB) assay. Pseudomonas aeruginosa, Burkholderia cenocepacia, Staphylococcus aureus, Propionibacterium acnes and Candida albicans were used as test organisms. In general, these assays showed a broad applicability and a high repeatability for most isolates. In addition, the estimated numbers of CFUs present in the biofilms show limited variations between the different assays. Nevertheless, our data show that some assays are less suitable for the quantification of biofilms of particular isolates (e.g. the CV assay for P. aeruginosa).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives

            Extensive documentation on the antimicrobial properties of essential oils and their constituents has been carried out by several workers. Although the mechanism of action of a few essential oil components has been elucidated in many pioneering works in the past, detailed knowledge of most of the compounds and their mechanism of action is still lacking. This knowledge is particularly important for the determination of the effect of essential oils on different microorganisms, how they work in combination with other antimicrobial compounds, and their interaction with food matrix components. Also, recent studies have demonstrated that nanoparticles (NPs) functionalized with essential oils have significant antimicrobial potential against multidrug- resistant pathogens due to an increase in chemical stability and solubility, decreased rapid evaporation and minimized degradation of active essential oil components. The application of encapsulated essential oils also supports their controlled and sustained release, which enhances their bioavailability and efficacy against multidrug-resistant pathogens. In the recent years, due to increasingly negative consumer perceptions of synthetic preservatives, interest in essential oils and their application in food preservation has been amplified. Moreover, the development of resistance to different antimicrobial agents by bacteria, fungi, viruses, parasites, etc. is a great challenge to the medical field for treating the infections caused by them, and hence, there is a pressing need to look for new and novel antimicrobials. To overcome these problems, nano-encapsulation of essential oils and exploiting the synergies between essential oils, constituents of essential oils, and antibiotics along with essential oils have been recommended as an answer to this problem. However, less is known about the interactions that lead to additive, synergistic, or antagonistic effects. A contributing role of this knowledge could be the design of new and more potent antimicrobial blends, and understanding of the interplay between the components of crude essential oils. This review is written with the purpose of giving an overview of current knowledge about the antimicrobial properties of essential oils and their mechanisms of action, components of essential oils, nano-encapsulated essential oils, and synergistic combinations of essential oils so as to find research areas that can facilitate applications of essential oils to overcome the problem of multidrug-resistant micro-organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial and antifungal activities of thymol: A brief review of the literature.

              Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family (Thymus, Ocimum, Origanum, and Monarda genera), and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae, and Apiaceae families. These essential oils are used in the food industry for their flavouring and preservative properties, in commercial mosquito repellent formulations for their natural repellent effect, in aromatherapy, and in traditional medicine for the treatment of headaches, coughs, and diarrhea. Many different activities of thymol such as antioxidant, anti-inflammatory, local anaesthetic, antinociceptive, cicatrizing, antiseptic, and especially antibacterial and antifungal properties have been shown. This review aims to critically evaluate the available literature regarding the antibacterial and antifungal effects of thymol.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                April 2023
                March 29 2023
                : 28
                : 7
                : 3044
                Article
                10.3390/molecules28073044
                37049808
                9f397d67-ec65-4412-b233-ad1a13759ac5
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article