Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-Cell STAT5 Signal Transduction Profiling in Normal and Leukemic Stem and Progenitor Cell Populations Reveals Highly Distinct Cytokine Responses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Signal Transducer and Activator of Transcription 5 (STAT5) plays critical roles in normal and leukemic hematopoiesis. However, the manner in which STAT5 responds to early-acting and lineage-restricted cytokines, particularly in leukemic stem/progenitor cells, is largely unknown.

          Methodology/Principal Findings

          We optimized a multiparametric flow cytometry protocol to analyze STAT5 phosphorylation upon cytokine stimulation in stem and progenitor cell compartments at a single-cell level. In normal cord blood (CB) cells, STAT5 phosphorylation was efficiently induced by TPO, IL-3 and GM-CSF within CD34 +CD38 hematopoietic stem cells (HSCs). EPO- and SCF-induced STAT5 phosphorylation was largely restricted to the megakaryocyte-erythroid progenitor (MEP) compartment, while G-CSF as well IL-3 and GM-CSF were most efficient in inducing STAT5 phosphorylation in the myeloid progenitor compartments. Strikingly, mobilized adult peripheral blood (PB) CD34 + cells responded much less efficiently to cytokine-induced STAT5 activation, with the exception of TPO. In leukemic stem and progenitor cells, highly distinct cytokine responses were observed, differing significantly from their normal counterparts. These responses could not be predicted by the expression level of cytokine receptors. Also, heterogeneity existed in cytokine requirements for long-term expansion of AML CD34 + cells on stroma.

          Conclusions/Significance

          In conclusion, our optimized multiparametric flow cytometry protocols allow the analysis of signal transduction at the single cell level in normal and leukemic stem and progenitor cells. Our study demonstrates highly distinctive cytokine responses in STAT5 phosphorylation in both normal and leukemic stem/progenitor cells.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          SOCS proteins: negative regulators of cytokine signaling.

          Cytokines regulate the growth and differentiation of cells by binding to cell-surface receptors and activating intracellular signal transduction cascades such as the JAK-STAT pathway. Cytokine signaling is negatively regulated with respect to both magnitude and duration, and it is now clear that the suppressor of cytokine signaling (SOCS) family of proteins (SOCS1-SOCS7 and CIS) contributes significantly to this process. Transcripts encoding CIS, SOCS1, SOCS2, and SOCS3 are upregulated in response to cytokine stimulation, and the corresponding SOCS proteins inhibit cytokine-induced signaling pathways. SOCS proteins therefore form part of a classical negative feedback circuit. SOCS family members modulate signaling by several mechanisms, which include inactivation of the Janus kinases (JAKs), blocking access of the signal transducers and activators of transcription (STATs) to receptor binding sites, and ubiquitination of signaling proteins and their subsequent targeting to the proteasome. Gene targeting has been used to generate mice lacking socs1, socs2, or socs3, in order to elucidate the physiological function of these SOCS family members. The analysis of socs1(-/-) mice has revealed that SOCS1 plays a key role in the negative regulation of interferon-gamma signaling and in T cell differentiation. Socs2(-/-) mice are 30%-40% larger than wild-type mice, demonstrating that SOCS2 is a critical regulator of postnatal growth. Additionally, the study of embryos lacking socs3 has revealed that SOCS3 is an important regulator of fetal liver hematopoiesis. The biological role of other SOCS proteins remains to be determined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prospective isolation of human clonogenic common myeloid progenitors.

            The hierarchical development from hematopoietic stem cells to mature cells of the hematolymphoid system involves progressive loss of self-renewal capacity, proliferation ability, and lineage potentials. Here we show the prospective isolation of early developmental intermediates, the human clonogenic common myeloid progenitors and their downstream progeny, the granulocyte/macrophage and megakaryocyte/erythrocyte progenitors. All three populations reside in the lineage-negative (lin(-)) CD34(+)CD38(+) fraction of adult bone marrow as well as in cord blood. They are distinguishable by the expression of the IL-3R alpha chain, the receptor of an early-acting hematopoietic cytokine, and CD45RA, an isoform of a phosphotyrosine phosphatase involved in negative regulation of cytokine signaling. Multipotent progenitors, early lymphoid progenitors, and the here-defined myeloid progenitors express distinct profiles of hematopoiesis-affiliated genes. The isolation of highly purified hematopoietic intermediates provides tools to better understand developmental programs underlying normal and leukemic hematopoiesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia.

              Human hematopoietic stem cells (HSCs) are generally regarded as being devoid of the markers expressed by differentiated blood cells, the lineage-specific antigens. However, recent work suggests that genes associated with the myeloid lineage are transcribed in mouse HSCs. Here, we explore whether myeloid genes are actually translated in human HSCs. We show that CD33, CD13, and CD123, well-established myeloid markers, are expressed on human long-term repopulating cells from cord blood and bone marrow. In addition, we demonstrate that nonobese diabetic/severe combined immunodeficiency (NOD/SCID) leukemia-initiating cells (SL-ICs) are restricted to the CD33+ fraction in 11 of 12 acute myeloid leukemia (AML) samples studied, indicating that leukemic stem cells (LSCs) express this antigen. This study changes our view of HSCs and the process of differentiation. Furthermore, based on the phenotypic similarity of HSCs and LSCs, our data provide support for the hypothesis that AML derives from an HSC. Our findings also provide a challenge to contemporary attempts to improve the outcome of AML using myeloid antigen-targeted therapies, given the potential for HSC killing.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                24 November 2009
                : 4
                : 11
                : e7989
                Affiliations
                [1 ]Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
                [2 ]Department of Hematology, The First Clinical College of Harbin Medical University, Harbin, China
                LMU University of Munich, Germany
                Author notes

                Conceived and designed the experiments: LH JJS. Performed the experiments: LH. Analyzed the data: LH Ev JJS. Wrote the paper: LH JJS. Contributed to optimizing the intracellular FACS protocols: ATJW MRG KVDL. Contributed to writing of the paper: EV.

                Article
                09-PONE-RA-13054R1
                10.1371/journal.pone.0007989
                2776352
                19956772
                9f376549-192b-442e-bb00-6eaa71a61ec6
                Han et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 September 2009
                : 30 October 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Cell Biology/Leukocyte Signaling and Gene Expression
                Hematology/Acute Myeloid Leukemia
                Hematology/Hematopoiesis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content589

                Cited by9

                Most referenced authors616