3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discovery of SY-5609: A Selective, Noncovalent Inhibitor of CDK7

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A simple method for displaying the hydropathic character of a protein.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting transcription regulation in cancer with a covalent CDK7 inhibitor

              Tumor oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state 1 , but direct pharmacological inhibition of transcription factors has thus far proven difficult 2 . However, the transcriptional machinery contains various enzymatic co-factors that can be targeted for development of new therapeutic candidates 3 , including cyclin-dependent kinases (CDKs) 4 . Here we present the discovery and characterization of the first covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell line profiling indicates that a subset of cancer cell lines, including T-ALL, exhibit exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and this transcription factor’s key role in the core transcriptional regulatory circuitry of these tumor cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumor types exhibiting extreme dependencies on transcription for maintenance of the oncogenic state.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Medicinal Chemistry
                J. Med. Chem.
                American Chemical Society (ACS)
                0022-2623
                1520-4804
                January 27 2022
                November 02 2021
                January 27 2022
                : 65
                : 2
                : 1458-1480
                Affiliations
                [1 ]Syros Pharmaceuticals Inc., 35 Cambridge Park Drive, Fourth Floor, Cambridge, Massachusetts 02140, United States
                [2 ]Paraza Pharma Inc., 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
                Article
                10.1021/acs.jmedchem.1c01171
                34726887
                9f289f9f-fef1-4765-898a-8a8898442618
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article