7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sleepers track informative speech in a multitalker environment

      , , ,
      Nature Human Behaviour
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.

          Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breakdown of cortical effective connectivity during sleep.

            When we fall asleep, consciousness fades yet the brain remains active. Why is this so? To investigate whether changes in cortical information transmission play a role, we used transcranial magnetic stimulation together with high-density electroencephalography and asked how the activation of one cortical area (the premotor area) is transmitted to the rest of the brain. During quiet wakefulness, an initial response (approximately 15 milliseconds) at the stimulation site was followed by a sequence of waves that moved to connected cortical areas several centimeters away. During non-rapid eye movement sleep, the initial response was stronger but was rapidly extinguished and did not propagate beyond the stimulation site. Thus, the fading of consciousness during certain stages of sleep may be related to a breakdown in cortical effective connectivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the interpretation of weight vectors of linear models in multivariate neuroimaging.

              The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via brain-computer interfaces, it is most important to accurately extract the neural processes specific to a certain mental state. These equally important but complementary objectives require different analysis methods. Determining the origin of neural processes in time or space from the parameters of a data-driven model requires what we call a forward model of the data; such a model explains how the measured data was generated from the neural sources. Examples are general linear models (GLMs). Methods for the extraction of neural information from data can be considered as backward models, as they attempt to reverse the data generating process. Examples are multivariate classifiers. Here we demonstrate that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study. In contrast, the interpretation of backward model parameters can lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since significant nonzero weights may also be observed at channels the activity of which is statistically independent of the brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward models into forward models. This procedure enables the neurophysiological interpretation of the parameters of linear backward models. We hope that this work raises awareness for an often encountered problem and provides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature Human Behaviour
                Nat Hum Behav
                Springer Nature
                2397-3374
                January 14 2019
                Article
                10.1038/s41562-018-0502-5
                30953006
                9ef1be72-703a-4d55-b214-93a351bcefdc
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article