21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antimicrobial Resistance Surveillance in Low- and Middle-Income Countries: Progress and Challenges in Eight South Asian and Southeast Asian Countries

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance (AMR) is a serious global health threat and is predicted to cause significant health and economic impacts, particularly in low- and middle-income countries (LMICs). AMR surveillance is critical in LMICs due to high burden of bacterial infections; however, conducting AMR surveillance in resource-limited settings is constrained by poorly functioning health systems, scarce financial resources, and lack of skilled personnel. In 2015, the United Nations World Health Assembly endorsed the World Health Organization’s Global Action Plan to tackle AMR; thus, several countries are striving to improve their AMR surveillance capacity, including making significant investments and establishing and expanding surveillance networks.

          SUMMARY

          Antimicrobial resistance (AMR) is a serious global health threat and is predicted to cause significant health and economic impacts, particularly in low- and middle-income countries (LMICs). AMR surveillance is critical in LMICs due to high burden of bacterial infections; however, conducting AMR surveillance in resource-limited settings is constrained by poorly functioning health systems, scarce financial resources, and lack of skilled personnel. In 2015, the United Nations World Health Assembly endorsed the World Health Organization’s Global Action Plan to tackle AMR; thus, several countries are striving to improve their AMR surveillance capacity, including making significant investments and establishing and expanding surveillance networks. Initial data generated from AMR surveillance networks in LMICs suggest the high prevalence of resistance, but these data exhibit several shortcomings, such as a lack of representativeness, lack of standardized laboratory practices, and underutilization of microbiology services. Despite significant progress, AMR surveillance networks in LMICs face several challenges in expansion and sustainability due to limited financial resources and technical capacity. This review summarizes the existing health infrastructure affecting the establishment of AMR surveillance programs, the burden of bacterial infections demonstrating the need for AMR surveillance, and current progress and challenges in AMR surveillance efforts in eight South and Southeast Asian countries.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis

          The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

            Summary Background How long one lives, how many years of life are spent in good and poor health, and how the population’s state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1–7·8), from 65·6 years (65·3–65·8) in 1990 to 73·0 years (72·7–73·3) in 2017. The increase in years of life varied from 5·1 years (5·0–5·3) in high SDI countries to 12·0 years (11·3–12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1–33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8–15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9–6·7), from 57·0 years (54·6–59·1) in 1990 to 63·3 years (60·5–65·7) in 2017. The increase varied from 3·8 years (3·4–4·1) in high SDI countries to 10·5 years (9·8–11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4–1·7) in Saint Vincent and the Grenadines (62·4 years [59·9–64·7] in 1990 to 63·5 years [60·9–65·8] in 2017) to 23·7 years (21·9–25·6) in Eritrea (30·7 years [28·9–32·2] in 1990 to 54·4 years [51·5–57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6–2·3) in Algeria to 11·9 years (10·9–12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4–78·7]) and males (72·6 years [69·8–75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7–50·2] for females and 42·8 years [40·1–45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8–43·5) for communicable diseases and by 49·8% (47·9–51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8–43·0), although age-standardised DALY rates decreased by 18·1% (16·0–20·2). Interpretation With increasing life expectancy in most countries, the question of whether the additional years of life gained are spent in good health or poor health has been increasingly relevant because of the potential policy implications, such as health-care provisions and extending retirement ages. In some locations, a large proportion of those additional years are spent in poor health. Large inequalities in HALE and disease burden exist across countries in different SDI quintiles and between sexes. The burden of disabling conditions has serious implications for health system planning and health-related expenditures. Despite the progress made in reducing the burden of communicable diseases and neonatal disorders in low SDI countries, the speed of this progress could be increased by scaling up proven interventions. The global trends among non-communicable diseases indicate that more effort is needed to maximise HALE, such as risk prevention and attention to upstream determinants of health. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis.

              Health-care-associated infection is the most frequent result of unsafe patient care worldwide, but few data are available from the developing world. We aimed to assess the epidemiology of endemic health-care-associated infection in developing countries. We searched electronic databases and reference lists of relevant papers for articles published 1995-2008. Studies containing full or partial data from developing countries related to infection prevalence or incidence-including overall health-care-associated infection and major infection sites, and their microbiological cause-were selected. We classified studies as low-quality or high-quality according to predefined criteria. Data were pooled for analysis. Of 271 selected articles, 220 were included in the final analysis. Limited data were retrieved from some regions and many countries were not represented. 118 (54%) studies were low quality. In general, infection frequencies reported in high-quality studies were greater than those from low-quality studies. Prevalence of health-care-associated infection (pooled prevalence in high-quality studies, 15·5 per 100 patients [95% CI 12·6-18·9]) was much higher than proportions reported from Europe and the USA. Pooled overall health-care-associated infection density in adult intensive-care units was 47·9 per 1000 patient-days (95% CI 36·7-59·1), at least three times as high as densities reported from the USA. Surgical-site infection was the leading infection in hospitals (pooled cumulative incidence 5·6 per 100 surgical procedures), strikingly higher than proportions recorded in developed countries. Gram-negative bacilli represented the most common nosocomial isolates. Apart from meticillin resistance, noted in 158 of 290 (54%) Staphylococcus aureus isolates (in eight studies), very few articles reported antimicrobial resistance. The burden of health-care-associated infection in developing countries is high. Our findings indicate a need to improve surveillance and infection-control practices. World Health Organization. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Clinical Microbiology Reviews
                Clin Microbiol Rev
                American Society for Microbiology
                0893-8512
                1098-6618
                June 17 2020
                June 17 2020
                : 33
                : 3
                Affiliations
                [1 ]Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
                [2 ]Department of Infectious Diseases, Rural Development Trust Hospital, Bathalapalli, Anantapur, Andhra Pradesh, India
                [3 ]Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
                [4 ]Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
                [5 ]Center for Disease Dynamics, Economics and Policy, New Delhi, India
                [6 ]Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
                [7 ]Oxford University Clinical Research Unit, National Hospital for Tropical Diseases, Hanoi, Vietnam
                Article
                10.1128/CMR.00048-19
                32522747
                9ed8e8c5-7ca3-44ea-b823-603145ab3595
                © 2020

                https://journals.asm.org/non-commercial-tdm-license

                History

                Comments

                Comment on this article