4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective Dorsal Rhizotomy for Treatment of Hereditary Spastic Paraplegia-Associated Spasticity in 37 Patients

      research-article
      1 , , 1 , 1 , 1
      ,
      Cureus
      Cureus
      hereditary spastic paraplegia, selective dorsal rhizotomy, spasticity, ambulation, genetics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A limited number of publications have described a reduction of spasticity associated with hereditary spastic paraplegia (HSP) after selective dorsal rhizotomy (SDR). Typically, the SDR procedure is performed on patients with spastic cerebral palsy to remove spasticity and to help these patients with ambulatory function. Whether SDR has similar effects on HSP patients, requires further investigation. Thus, we are providing a personal experience of the effects of SDR on this specific cohort of patients.

          Objectives

          To examine the safety of SDR, changes in spasticity, and ambulatory function after SDR on patients with HSP.

          Methods

          The Institutional Review Board of Washington University School of Medicine approved this study (#201704003). A total of 37 children and adults received SDR for the treatment of HSP-associated spasticity between 1988 and 2021. SDR was performed through an L1 laminectomy, as we previously described in an earlier publication. The patients took part in the follow-up examination either in-person or by email. The follow-up focused on the patients’ motor functions (primarily ambulation), adverse effects of SDR, and orthopedic treatments after SDR.

          Results

          Of the total 37 patients who participated in this study, 46% were female and 54% were male. The age range of when HSP was diagnosed was one month to 34 years. Six of the patients’ diagnoses were made, based on the family history of HSP in six patients and the remaining 31 patients’ diagnoses were confirmed by genetic tests. The most common genetic mutations were SPG4 and SPG3A. Of the patients with positive genetic tests, 40% had no family history of HSP. SDR was performed at the age of 2 to 45 years (mean: 14.7 years). The follow-up period ranged from 0 to 33 years (mean: 3.8 years). One patient developed a spinal fluid leak requiring surgical repair. Two patients reported mild numbness in parts of the lower limbs. Spasticity was removed in 33 patients (89%). Four patients (11%) experienced a return in spasticity. Regarding ambulatory function, 11% of patients reported a decline in function. Two patients walked independently before surgery but declined, requiring a wheelchair eight years and seven years, respectively, after surgery for each patient. In contrast, 16% saw an improvement in ambulatory function, improving from walking with a walker to walking independently. The remaining 73% of patients maintained their level of ambulation. These two groups of patients showed improvement in other motor functions and independence.

           Conclusions

          The present analysis suggests the potential role of SDR in the management of spasticity in HSP patients. We found no sign of SDR being a direct cause of deleterious effects on patients with HSP.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Spastic muscle cells are shorter and stiffer than normal cells.

          The mechanical properties of isolated single muscle fiber segments were measured in muscle cells obtained from patients undergoing surgery for correction of flexion contractures secondary to static perinatal encephalopathy (cerebral palsy). "Normal" muscle cells from patients with intact neuromuscular function were also mechanically tested. Fiber segments taken from subjects with spasticity developed passive tension at significantly shorter sarcomere lengths (1.84 +/- 0.05 microm, n = 15) than fibers taken from normal subjects (2.20 +/- 0.04 microm, n = 35). Elastic modulus of the stress-strain relationship in fibers from patients with spasticity (55.00 +/- 6.61 kPa) was almost double that measured in normal fibers (28.25 +/- 3.31 kPa). The fact that these muscle cells from patients with spasticity have a shorter resting sarcomere length and increased modulus compared with normal muscle cells suggests dramatic remodeling of intracellular or extracellular muscle structural components such as titin and collagen. Such changes in muscles of patients with spasticity may have implications for therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The extent of axonal loss in the long tracts in hereditary spastic paraplegia.

            Hereditary spastic paraplegia (HSP) comprises a group of inherited neurodegenerative disorders with the shared characteristics of progressive weakness and spasticity predominantly affecting the lower limbs. Limited pathological accounts have described a 'dying back' axonal degeneration in this disease. However, the distribution and extent of axonal loss has not been elucidated in a quantitative way. We have studied post-mortem material from six HSP patients and 32 controls in detail. The population of axons was examined quantitatively in the corticospinal tracts from the medulla to the lumbar spinal cord and the sensory tracts from the lumbar to upper cervical spinal cord. Myelin and axon-stained sections were employed to estimate the notional area and axonal density, respectively, of both tracts. Our results indicate that in the corticospinal tracts there is a significant reduction in area and axonal density at all levels investigated in HSP compared to controls. In the corticospinal tracts, the ratio of medulla and lumbar total axonal number was significantly greater in HSP cases compared to controls suggesting more pronounced axonal loss in the distal neuraxis in HSP than in controls. The sensory tracts in HSP, in contrast, showed a significant reduction in area and axonal density only in the upper regions of the spinal cord. Similar to the corticospinal tracts, the ratio of lumbar and upper cervical cord total axonal number in the sensory tracts was increased in HSP cases compared to controls. These findings are consistent with a length-dependent 'dying back' axonopathy. Nerve fibre loss was not size-selective with both small and large diameter fibres affected. In HSP, axonal loss is widespread and symmetrical and its extent tract-specific. The characterization of the nature of axonal loss in HSP, where this is a primary phenomenon, may help the interpretation of axonal loss in conditions such as multiple sclerosis where the sequence of events is less clear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Management of Hereditary Spastic Paraplegia: A Systematic Review of the Literature

              The term hereditary spastic paraplegia (HSP) embraces a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by progressive spasticity and weakness of the lower limbs. There currently exist no specific therapies for HSP, and treatment is exclusively symptomatic, aimed at reducing muscle spasticity, and improving strength and gait. The authors set out to perform a comprehensive systematic review of the available scientific literature on the treatment of HSP, applying Cochrane Collaboration methods. The Google Scholar, PubMed and Scopus electronic databases were searched to find relevant randomized control trials (RCTs) and open-label interventional studies, prospective, and retrospective observational studies of supplements, medications, and physical therapy, as well as case reports and case series. Two authors independently analyzed 27 articles selected on the basis of a series of inclusion criteria. Applying a best-evidence synthesis approach, they evaluated these articles for methodological quality. A standardized scoring system was used to obtain interrater assessments. Disagreements were resolved by discussion. The 27 articles focused on pharmacological treatment (n = 17 articles), physical therapy (n = 5), surgical treatment (n = 5). The drugs used in the 17 articles on pharmacological therapy were: gabapentin, progabide, dalfampridine, botulinum toxin, L-Dopa, cholesterol-lowering drugs, betaine, and folinic acid. Gabapentin, progabide, dalfampridine, and botulinum toxin were used as antispastic agents; the study evaluating gabapentin efficacy was well-designed, but failed to demonstrate any significant improvement. L-Dopa, cholesterol-lowering drugs, betaine, and folinic acid were only used in specific HSP subtypes. Two of the three studies evaluating cholesterol-lowering drugs (in SPG5 patients) were well-designed and showed a significant reduction of specific serum biomarkers (oxysterols), but clinical outcomes were not evaluated. The articles focusing on physical treatment and surgical therapy were found to be of low/medium quality and, accordingly, failed to clarify the role of these approaches in HSP. Despite recent advances in understanding of the pathogenesis of HSP and the possibility, in several centers, of obtaining more precise and rapid molecular diagnoses, there is still no adequate evidence base for recommending the various published therapies. Well-designed RCTs are needed to evaluate the efficacy of both symptomatic and pathogenetic treatments.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                3 September 2021
                September 2021
                : 13
                : 9
                : e17690
                Affiliations
                [1 ] Pediatric Neurosurgery, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, USA
                Author notes
                Article
                10.7759/cureus.17690
                8487639
                9ebf8531-2299-4c27-880a-760dc269262b
                Copyright © 2021, Park et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 September 2021
                Categories
                Neurology
                Pediatric Surgery
                Neurosurgery

                hereditary spastic paraplegia,selective dorsal rhizotomy,spasticity,ambulation,genetics

                Comments

                Comment on this article