101
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Phylogenomic View of Ecological Specialization in the Lachnospiraceae, a Family of Digestive Tract-Associated Bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several bacterial families are known to be highly abundant within the human microbiome, but their ecological roles and evolutionary histories have yet to be investigated in depth. One such family, Lachnospiraceae (phylum Firmicutes, class Clostridia) is abundant in the digestive tracts of many mammals and relatively rare elsewhere. Members of this family have been linked to obesity and protection from colon cancer in humans, mainly due to the association of many species within the group with the production of butyric acid, a substance that is important for both microbial and host epithelial cell growth. We examined the genomes of 30 Lachnospiraceae isolates to better understand the origin of butyric acid capabilities and other ecological adaptations within this group. Butyric acid production-related genes were detected in fewer than half of the examined genomes with the distribution of this function likely arising in part from lateral gene transfer (LGT). An investigation of environment-specific functional signatures indicated that human gut-associated Lachnospiraceae possess genes for endospore formation, whereas other members of this family lack key sporulation-associated genes, an observation supported by analysis of metagenomes from the human gut, oral cavity, and bovine rumen. Our analysis demonstrates that adaptation to an ecological niche and acquisition of defining functional roles within a microbiome can arise through a combination of both habitat-specific gene loss and LGT.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine.

          Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut

            Background Fecal bacteriotherapy (‘stool transplant’) can be effective in treating recurrent Clostridium difficile infection, but concerns of donor infection transmission and patient acceptance limit its use. Here we describe the use of a stool substitute preparation, made from purified intestinal bacterial cultures derived from a single healthy donor, to treat recurrent C. difficile infection that had failed repeated standard antibiotics. Thirty-three isolates were recovered from a healthy donor stool sample. Two patients who had failed at least three courses of metronidazole or vancomycin underwent colonoscopy and the mixture was infused throughout the right and mid colon. Pre-treatment and post-treatment stool samples were analyzed by 16 S rRNA gene sequencing using the Ion Torrent platform. Results Both patients were infected with the hyper virulent C. difficile strain, ribotype 078. Following stool substitute treatment, each patient reverted to their normal bowel pattern within 2 to 3 days and remained symptom-free at 6 months. The analysis demonstrated that rRNA sequences found in the stool substitute were rare in the pre-treatment stool samples but constituted over 25% of the sequences up to 6 months after treatment. Conclusion This proof-of-principle study demonstrates that a stool substitute mixture comprising a multi-species community of bacteria is capable of curing antibiotic-resistant C. difficile colitis. This benefit correlates with major changes in stool microbial profile and these changes reflect isolates from the synthetic mixture. Trial registration Clinical trial registration number: CinicalTrials.gov NCT01372943
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man.

              Suspensions of isolated epithelial cells (colonocytes) from the human colon were used to assess utilisation of respiratory fuels which are normally available to the colonic mucosa in vivo. Cells were prepared from operative specimens of the ascending colon (seven) and descending colon (seven). The fuels that were used were the short chain fatty acid n-butyrate, produced only by anaerobic bacteria in the colonic lumen, together with glucose and glutamine, normally present in the circulation. The percentage oxygen consumption attributable to n-butyrate, when this was the only substrate, was 73% in the ascending colon and 75% in the descending colon. In the presence of 10 mM glucose these proportions changed to 59% and 72%. Aerobic glycolysis was observed in both the ascending and descending colon. Glucose oxidation accounted for 85% of the oxygen consumption in the ascending colon and 30% in the descending colon. In the presence of 10 mM n-butyrate these proportions decreased to 41% in the ascending colon and 16% in the descending colon. Based on the assumption that events in the isolated colonocytes reflect utilization of fuels in vivo, the hypothesis is put forward that fatty acids of anaerobic bacteria are a major source of energy for the colonic mucosa, particularly of the distal colon.
                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                March 2014
                12 March 2014
                12 March 2014
                : 6
                : 3
                : 703-713
                Affiliations
                1Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
                2Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
                Author notes
                *Corresponding author: E-mail: beiko@ 123456cs.dal.ca .

                Associate editor: Tal Dagan

                Article
                evu050
                10.1093/gbe/evu050
                3971600
                24625961
                9ea465df-66de-48ba-9e3b-c645c1c602ec
                © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 March 2014
                Page count
                Pages: 11
                Categories
                Research Article

                Genetics
                lateral gene transfer,microbial genomes,metagenomics,phylogenomics,butyric acid,sporulation
                Genetics
                lateral gene transfer, microbial genomes, metagenomics, phylogenomics, butyric acid, sporulation

                Comments

                Comment on this article