Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
75
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Total-Evidence Dating under the Fossilized Birth–Death Process

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth–death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects, including sampling biases, are adequately addressed.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera

          Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.]
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating the rate of evolution of the rate of molecular evolution.

            A simple model for the evolution of the rate of molecular evolution is presented. With a Bayesian approach, this model can serve as the basis for estimating dates of important evolutionary events even in the absence of the assumption of constant rates among evolutionary lineages. The method can be used in conjunction with any of the widely used models for nucleotide substitution or amino acid replacement. It is illustrated by analyzing a data set of rbcL protein sequences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds.

              We implement a Bayesian Markov chain Monte Carlo algorithm for estimating species divergence times that uses heterogeneous data from multiple gene loci and accommodates multiple fossil calibration nodes. A birth-death process with species sampling is used to specify a prior for divergence times, which allows easy assessment of the effects of that prior on posterior time estimates. We propose a new approach for specifying calibration points on the phylogeny, which allows the use of arbitrary and flexible statistical distributions to describe uncertainties in fossil dates. In particular, we use soft bounds, so that the probability that the true divergence time is outside the bounds is small but nonzero. A strict molecular clock is assumed in the current implementation, although this assumption may be relaxed. We apply our new algorithm to two data sets concerning divergences of several primate species, to examine the effects of the substitution model and of the prior for divergence times on Bayesian time estimation. We also conduct computer simulation to examine the differences between soft and hard bounds. We demonstrate that divergence time estimation is intrinsically hampered by uncertainties in fossil calibrations, and the error in Bayesian time estimates will not go to zero with increased amounts of sequence data. Our analyses of both real and simulated data demonstrate potentially large differences between divergence time estimates obtained using soft versus hard bounds and a general superiority of soft bounds. Our main findings are as follows. (1) When the fossils are consistent with each other and with the molecular data, and the posterior time estimates are well within the prior bounds, soft and hard bounds produce similar results. (2) When the fossils are in conflict with each other or with the molecules, soft and hard bounds behave very differently; soft bounds allow sequence data to correct poor calibrations, while poor hard bounds are impossible to overcome by any amount of data. (3) Soft bounds eliminate the need for "safe" but unrealistically high upper bounds, which may bias posterior time estimates. (4) Soft bounds allow more reliable assessment of estimation errors, while hard bounds generate misleadingly high precisions when fossils and molecules are in conflict.
                Bookmark

                Author and article information

                Journal
                Syst Biol
                Syst. Biol
                sysbio
                sysbio
                Systematic Biology
                Oxford University Press
                1063-5157
                1076-836X
                March 2016
                22 October 2015
                22 October 2015
                : 65
                : 2
                : 228-249
                Affiliations
                1Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden;
                2Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4053 Basel, Switzerland;
                3Swiss Institute of Bioinformatics (SIB), Switzerland;
                4Department of Invertebrates, Natural History Museum Bern, CH-3005 Bern, Switzerland;
                5Department of Integrative Biology, University of California, Berkeley, CA 94720 USA;
                6Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
                7Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA 50011, USA
                Author notes
                *Correspondence to be sent to: Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden; E-mail: fredrik.ronquist@ 123456nrm.se .

                Associate Editor: Thomas Near

                Article
                syv080
                10.1093/sysbio/syv080
                4748749
                26493827
                9e449b34-52be-42f7-b4e4-25c77d22020b
                ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 February 2015
                : 12 October 2015
                : 12 October 2015
                Page count
                Pages: 22
                Categories
                Regular Articles

                Animal science & Zoology
                bayesian phylogenetic inference,birth–death process,mcmc,relaxed clock,total-evidence dating,tree prior

                Comments

                Comment on this article