21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      RNA N6-methyladenosine modification, spermatogenesis, and human male infertility

      1 , 2 , 1
      Molecular Human Reproduction
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA N6-methyladenosine (m6A) modification is one of the main forms of posttranscriptional modification, and its dysregulation is involved in a series of pathological processes. RNA m6A regulators, which mediate dynamic RNA m6A modification, are expressed in almost all types of testicular cells, including spermatogenetic cells and somatic cells. Cumulative studies have found that knockout of RNA m6A regulators in the testis leads to abnormal metabolism of the target mRNAs, which eventually causes spermatogenetic disorders and infertility. To date, a role for dysregulated RNA m6A modification in human male infertility remains elusive; however, dysregulated expression of RNA m6A regulators in abnormal human semen samples, including oligospermia, asthenozoospermia and azoospermia, has been found. Therefore, we speculate that abnormal RNA m6A methylation may be an important mechanism of male infertility. In this review, we summarize the recent findings regarding the spatiotemporal expression of RNA m6A regulators in the testes, mechanisms of RNA m6A modification in spermatogenesis and the relation between dysregulated RNA m6A regulators and human male infertility. In addition, we also discuss future directions in studying the molecular mechanism of male infertility and exploring their clinical applications from the viewpoint of RNA m6A modification.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          m6A-dependent regulation of messenger RNA stability

          N6 -methyladenosine (m6A) is the most prevalent internal (non-cap) modification present in the messenger RNA (mRNA) of all higher eukaryotes 1,2 . Although essential to cell viability and development 3–5 , the exact role of m6A modification remains to be determined. The recent discovery of two m6A demethylases in mammalian cells highlighted the importance of m6A in basic biological functions and disease 6–8 . Here we show that m6A is selectively recognized by the human YTH domain family 2 (YTHDF2) protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m6A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies 9 . The C-terminal domain of YTHDF2 selectively binds to m6A-containing mRNA whereas the N-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m6A modification is recognized by selective-binding proteins to affect the translation status and lifetime of mRNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons.

            Methylation of the N(6) position of adenosine (m(6)A) is a posttranscriptional modification of RNA with poorly understood prevalence and physiological relevance. The recent discovery that FTO, an obesity risk gene, encodes an m(6)A demethylase implicates m(6)A as an important regulator of physiological processes. Here, we present a method for transcriptome-wide m(6)A localization, which combines m(6)A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq). We use this method to identify mRNAs of 7,676 mammalian genes that contain m(6)A, indicating that m(6)A is a common base modification of mRNA. The m(6)A modification exhibits tissue-specific regulation and is markedly increased throughout brain development. We find that m(6)A sites are enriched near stop codons and in 3' UTRs, and we uncover an association between m(6)A residues and microRNA-binding sites within 3' UTRs. These findings provide a resource for identifying transcripts that are substrates for adenosine methylation and reveal insights into the epigenetic regulation of the mammalian transcriptome. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              N6-Methyladenosine in Nuclear RNA is a Major Substrate of the Obesity-Associated FTO

              We report here that FTO (fat mass and obesity-associated protein) exhibits efficient oxidative demethylation activity of abundant N 6-methyladenosine (m6A) residues in RNA in vitro. FTO knockdown with siRNA led to an increased level of m6A in mRNA, whereas overexpression of FTO resulted in a decreased level of m6A in human cells. We further show that FTO partially colocalizes with nuclear speckles, supporting m6A in nuclear RNA as a physiological substrate of FTO.
                Bookmark

                Author and article information

                Contributors
                Journal
                Molecular Human Reproduction
                Oxford University Press (OUP)
                1360-9947
                1460-2407
                June 01 2021
                May 29 2021
                June 01 2021
                May 29 2021
                March 22 2021
                : 27
                : 6
                Affiliations
                [1 ]Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
                [2 ]Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Beijing, China
                Article
                10.1093/molehr/gaab020
                33749751
                9e35eb00-af8a-43b4-bbe8-c39648292dca
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content536

                Cited by14

                Most referenced authors2,403