29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA recovery from archived RDTs for genetic characterization of Plasmodium falciparum in a routine setting in Lambaréné, Gabon

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rapid diagnostic tests (RDTs) have been described as a source of genetic material to analyse malaria parasites in proof-of-concept studies. The increasing use of RDTs (e.g., in focal or mass screening and treatment campaigns) makes this approach particularly attractive for large-scale investigations of parasite populations. In this study, the complexity of Plasmodium falciparum infections, parasite load and chloroquine resistance transporter gene mutations were investigated in DNA samples extracted from positive RDTs, obtained in a routine setting and archived at ambient temperature.

          Methods

          A total of 669 archived RDTs collected from malaria cases in urban, semi-urban and rural areas of central Gabon were used for P. falciparum DNA extraction. Performance of RDTs as a source of DNA for PCR was determined using: (i) amplification of a single copy merozoite surface protein 1 ( msp1) gene followed by highly sensitive and automated capillary electrophoresis; (ii) genotyping of the pfcrt gene locus 72–76 using haplotype-specific-probe-based real-time PCR to characterize chloroquine resistance; and, (iii) real-time PCR targeting 18S genes to detect and quantify Plasmodium parasites.

          Results

          Out of the 669 archived RDTs, amplification of P. falciparum nucleic materials had a success rate of 97% for 18S real-time PCR, and 88% for the msp1 gene. The multiplicity of infections (MOI) of the whole population was 2.6 (95% CI 2.5–2.8). The highest number of alleles detected in one infection was 11. The MOI decreased with increasing age (β = − 0.0046, p = 0.02) and residence in Lambaréné was associated with smaller MOIs (p < 0.001). The overall prevalence of mutations associated with chloroquine resistance was 78.5% and was not associated with age. In Lambaréné, prevalence of chloroquine resistance was lower compared to rural Moyen-Ogooué (β = − 0.809, p-value = 0.011).

          Conclusion

          RDT is a reliable source of DNA for P. falciparum detection and genotyping assays. Furthermore, the increasing use of RDTs allows them to be an alternative source of DNA for large-scale genetic epidemiological studies. Parasite populations in the study area are highly diverse and prevalence of chloroquine-resistant P. falciparum remains high, especially in rural areas.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT).

          The absolute necessity for rational therapy in the face of rampant drug resistance places increasing importance on the accuracy of malaria diagnosis. Giemsa microscopy and rapid diagnostic tests (RDTs) represent the two diagnostics most likely to have the largest impact on malaria control today. These two methods, each with characteristic strengths and limitations, together represent the best hope for accurate diagnosis as a key component of successful malaria control. This review addresses the quality issues with current malaria diagnostics and presents data from recent rapid diagnostic test trials. Reduction of malaria morbidity and drug resistance intensity plus the associated economic loss of these two factors require urgent scaling up of the quality of parasite-based diagnostic methods. An investment in anti-malarial drug development or malaria vaccine development should be accompanied by a parallel commitment to improve diagnostic tools and their availability to people living in malarious areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sterile protection against human malaria by chemoattenuated PfSPZ vaccine

            A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ (‘PfSPZ Vaccine’); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ (‘PfSPZ Challenge’) to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimalarial drug resistance in Africa: key lessons for the future.

              Drug-resistant parasites repeatedly arise as a result of widespread use of antimalarial drugs and have contributed significantly to the failure to control and eradicate malaria throughout the world. In this review, we describe the spread of resistance to chloroquine and sulfadoxine-pyrimethamine, two old drugs that are no longer used owing to high rates of resistance, and examine the effect of the removal of drug pressure on the survival of resistant parasites. Artemisinin-resistant malaria is now emerging in Southeast Asia in a unique and unexpected pattern. We will review the most recent genomic and clinical data to help predict the behavior of resistance to new antimalarial medications and inform strategies to prevent the spread of drug-resistant malaria in Africa in the future.
                Bookmark

                Author and article information

                Contributors
                +49 1521 321 6779 , drthe108@gmail.com
                +49 7071 2985446 , benjamin.mordmueller@uni-tuebingen.de
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                2 October 2019
                2 October 2019
                2019
                : 18
                : 336
                Affiliations
                [1 ]ISNI 0000 0001 2190 1447, GRID grid.10392.39, Institute of Tropical Medicine, , University of Tübingen, ; Wilhelmstraße 27, 72074 Tübingen, Germany
                [2 ]ISNI 0000 0001 2190 1447, GRID grid.10392.39, German Center for Infection Research, University of Tübingen, ; Wilhelmstraße 27, 72074 Tübingen, Germany
                [3 ]GRID grid.452268.f, Centre de Recherches Médicales de Lambaréné and African Partner Institution, German-Center for Infection Research, ; Lambaréné, Gabon
                [4 ]Vietnamese-German Center for Medical Research, Hanoi, Vietnam
                [5 ]ISNI 0000 0001 0701 3136, GRID grid.424065.1, Department of Tropical Medicine, , Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, ; Hamburg, Germany
                [6 ]ISNI 0000 0000 9259 8492, GRID grid.22937.3d, Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, , Medical University Vienna, ; Vienna, Austria
                [7 ]GRID grid.452468.9, Fondation Congolaise pour la Recherche Médicale, ; Brazzaville, Congo
                Article
                2972
                10.1186/s12936-019-2972-y
                6775649
                31578142
                9e09bc14-1239-47d9-a6e9-9192e3427923
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 May 2019
                : 24 September 2019
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Infectious disease & Microbiology
                malaria,plasmodium falciparum,rdt,msp1,pfcrt,gabon,capillary electrophoresis

                Comments

                Comment on this article