0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Poroelastic stress relaxation, slip stress transfer and friction weakening controlled post-injection seismicity at the Basel Enhanced Geothermal System

      , , ,
      Communications Earth & Environment
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Induced seismicity is a limiting factor for the development of Enhanced Geothermal Systems (EGS). Its causal mechanisms are not fully understood, especially those of post-injection seismicity. To better understand the mechanisms that induced seismicity in the controversial case of the Basel EGS (Switzerland), we perform coupled hydro-mechanical simulation of the plastic response of a discrete pre-existing fault network built on the basis of the monitored seismicity. Simulation results show that the faults located in the vicinity of the injection well fail during injection mainly triggered by pore pressure buildup. Poroelastic stressing, which may be stabilizing or destabilizing depending on the fault orientation, reaches further than pressure diffusion, having a greater effect on distant faults. After injection stops, poroelastic stress relaxation leads to the immediate rupture of previously stabilized faults. Shear-slip stress transfer, which also contributes to post-injection reactivation of distant faults, is enhanced in faults with slip-induced friction weakening.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Injection-induced earthquakes.

          Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An experiment in earthquake control at rangely, colorado.

            An experiment in an oil field at Rangely, Colorado, has demonstrated the feasibility of earthquake control. Variations in seismicity were produced by controlled variations in the fluid pressure in a seismically active zone. Precise earthquake locations revealed that the earthquakes clustered about a fault trending through a zone of high pore pressure produced by secondary recovery operations. Laboratory measurements of the frictional properties of the reservoir rocks and an in situ stress measurement made near the earthquake zone were used to predict the fluid pressure required to trigger earthquakes on preexisting fractures. Fluid pressure was controlled by alternately injecting and recovering water from wells that penetrated the seismic zone. Fluid pressure was monitored in observation wells, and a computer model of the reservoir was used to infer the fluid pressure distributions in the vicinity of the injection wells. The results of this experiment confirm the predicted effect of fluid pressure on earthquake activity and indicate that earthquakes can be controlled wherever we can control the fluid pressure in a fault zone.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

                Bookmark

                Author and article information

                Contributors
                Journal
                Communications Earth & Environment
                Commun Earth Environ
                Springer Science and Business Media LLC
                2662-4435
                December 2023
                April 05 2023
                : 4
                : 1
                Article
                10.1038/s43247-023-00764-y
                37325084
                9de3cd0b-8518-4a6a-b82a-315d819345cd
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article