11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Can We Use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to Assign the Ecological Functions of Soil Bacteria?

      , , , , ,
      Applied Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          FAPROTAX is a promising tool for predicting ecological relevant functions of bacterial and archaeal taxa derived from 16S rRNA amplicon sequencing. The database was initially developed to predict the function of marine species using standard microbiological references. This study, however, has attempted to access the application of FAPROTAX in soil environments. We hypothesized that FAPROTAX was compatible with terrestrial ecosystems. The potential use of FAPROTAX to assign ecological functions of soil bacteria was investigated using meta-analysis and our newly designed experiments. Soil samples from two major terrestrial ecosystems, including agricultural land and forest, were collected. Bacterial taxonomy was analyzed using Illumina sequencing of the 16S rRNA gene and ecological functions of the soil bacteria were assigned by FAPROTAX. The presence of all functionally assigned OTUs (Operation Taxonomic Units) in soil were manually checked using peer-reviewed articles as well as standard microbiology books. Overall, we showed that sample source was not a predominant factor that limited the application of FAPROTAX, but poor taxonomic identification was. The proportion of assigned taxa between aquatic and non-aquatic ecosystems was not significantly different (p > 0.05). There were strong and significant correlations (σ = 0.90–0.95, p < 0.01) between the number of OTUs assigned to genus or order level and the number of functionally assigned OTUs. After manual verification, we found that more than 97% of the FAPROTAX assigned OTUs have previously been detected and potentially performed functions in agricultural and forest soils. We further provided information regarding taxa capable of N-fixation, P and K solubilization, which are three main important elements in soil systems and can be integrated with FAPROTAX to increase the proportion of functionally assigned OTUs. Consequently, we concluded that FAPROTAX can be used for a fast-functional screening or grouping of 16S derived bacterial data from terrestrial ecosystems and its performance could be enhanced through improving the taxonomic and functional reference databases.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.

          mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            UCHIME improves sensitivity and speed of chimera detection

            Motivation: Chimeric DNA sequences often form during polymerase chain reaction amplification, especially when sequencing single regions (e.g. 16S rRNA or fungal Internal Transcribed Spacer) to assess diversity or compare populations. Undetected chimeras may be misinterpreted as novel species, causing inflated estimates of diversity and spurious inferences of differences between populations. Detection and removal of chimeras is therefore of critical importance in such experiments. Results: We describe UCHIME, a new program that detects chimeric sequences with two or more segments. UCHIME either uses a database of chimera-free sequences or detects chimeras de novo by exploiting abundance data. UCHIME has better sensitivity than ChimeraSlayer (previously the most sensitive database method), especially with short, noisy sequences. In testing on artificial bacterial communities with known composition, UCHIME de novo sensitivity is shown to be comparable to Perseus. UCHIME is >100× faster than Perseus and >1000× faster than ChimeraSlayer. Contact: robert@drive5.com Availability: Source, binaries and data: http://drive5.com/uchime. Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences

              Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community’s functional capabilities. Here we describe PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this ‘predictive metagenomic’ approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                January 2021
                January 12 2021
                : 11
                : 2
                : 688
                Article
                10.3390/app11020688
                9dcc4e53-2235-45a4-af86-3d42cce928cb
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article