12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic Effects of Aortic Arch Stiffening on Pulsatile Energy Transmission to Cerebral Vasculature as A Determinant of Brain-Heart Coupling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aortic stiffness increases with age and is a robust predictor of brain pathology including Alzheimer’s and other dementias. Aging causes disproportionate stiffening of the aorta compared with the carotid arteries, reducing protective impedance mismatches at their interface and affecting transmission of destructive pulsatile energy to the cerebral circulation. Recent clinical studies have measured regional stiffness within the aortic arch using pulse wave velocity (PWV) and have found a stronger association with cerebrovascular events than global stiffness measures. However, effects of aortic arch PWV on the transmission of harmful excessive pulsatile energy to the brain is not well-understood. In this study, we use an energy-based analysis of hemodynamic waves to quantify the effect of aortic arch stiffening on transmitted pulsatility to cerebral vasculature, employing a computational approach using a one-dimensional model of the human vascular network. Results show there exists an optimum wave condition—occurring near normal human heart rates—that minimizes pulsatile energy transmission to the brain. This indicates the important role of aortic arch biomechanics on heart-brain coupling. Our results also suggest that energy-based indices of pulsatility combining pressure and flow data are more sensitive to increased stiffness than using flow or pressure pulsatility indices in isolation.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          2018 Alzheimer's disease facts and figures

          (2018)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

            Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, P<0.001). Carotid pulse pressure, pulsatility index and carotid-femoral pulse wave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, P<0.002). Carotid-femoral pulse wave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, P<0.001), grey matter (-0.079 ± 0.038 SD/SD, P = 0.038) and white matter (-0.128 ± 0.039 SD/SD, P<0.001) volumes. Carotid-femoral pulse wave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, P<0.001), slower processing speed (-0.118 ± 0.033 SD/SD, P<0.001) and worse performance on tests assessing executive function (-0.155 ± 0.041 SD/SD, P<0.001). When magnetic resonance imaging measures (grey and white matter volumes, white matter hyperintensity volumes and prevalent subcortical infarcts) were included in cognitive models, haemodynamic associations were attenuated or no longer significant, consistent with the hypothesis that increased aortic stiffness and excessive flow pulsatility damage the microcirculation, leading to quantifiable tissue damage and reduced cognitive performance. Marked stiffening of the aorta is associated with reduced wave reflection at the interface between carotid and aorta, transmission of excessive flow pulsatility into the brain, microvascular structural brain damage and lower scores in various cognitive domains.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chronotropic incompetence: causes, consequences, and management.

                Bookmark

                Author and article information

                Contributors
                pahlevan@usc.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 May 2020
                29 May 2020
                2020
                : 10
                : 8784
                Affiliations
                [1 ]ISNI 0000 0001 2156 6853, GRID grid.42505.36, Department of Aerospace and Mechanical Engineering, University of Southern California, ; Los Angeles, CA USA
                [2 ]ISNI 0000 0004 0452 8371, GRID grid.280933.3, Huntington Medical Research Institutes, Advanced Imaging Center, ; Pasadena, CA USA
                [3 ]ISNI 0000 0001 2156 6853, GRID grid.42505.36, Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, ; Los Angeles, CA USA
                Article
                65616
                10.1038/s41598-020-65616-7
                7260194
                32472027
                9dc3af25-ae84-498f-92a8-0e811b02f51b
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 June 2019
                : 4 May 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                biomedical engineering,mechanical engineering,neurodegenerative diseases,cardiovascular biology

                Comments

                Comment on this article